295 research outputs found

    Liquid ropes: a geometrical model for thin viscous jet instabilities.

    Get PDF
    Thin, viscous fluid threads falling onto a moving belt behave in a way reminiscent of a sewing machine, generating a rich variety of periodic stitchlike patterns including meanders, W patterns, alternating loops, and translated coiling. These patterns form to accommodate the difference between the belt speed and the terminal velocity at which the falling thread strikes the belt. Using direct numerical simulations, we show that inertia is not required to produce the aforementioned patterns. We introduce a quasistatic geometrical model which captures the patterns, consisting of three coupled ordinary differential equations for the radial deflection, the orientation, and the curvature of the path of the thread's contact point with the belt. The geometrical model reproduces well the observed patterns and the order in which they appear as a function of the belt speed.P.-T. B. was partially funded by the ERC Grant No. SIMCOMICS 280117.This is the author accepted manuscript. The final version is available from APS via http://dx.doi.org/10.1103/PhysRevLett.114.17450

    Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic ÎČ-cells

    Get PDF
    Diabetes is a global health problem caused primarily by the inability of pancreatic ÎČ-cells to secrete adequate levels of insulin. The molecular mechanisms underlying the progressive failure of ÎČ-cells to respond to glucose in type-2 diabetes remain unresolved. Using a combination of transcriptomics and proteomics, we find significant dysregulation of major metabolic pathways in islets of diabetic ÎČV59M mice, a non-obese, eulipidaemic diabetes model. Multiple genes/proteins involved in glycolysis/gluconeogenesis are upregulated, whereas those involved in oxidative phosphorylation are downregulated. In isolated islets, glucose-induced increases in NADH and ATP are impaired and both oxidative and glycolytic glucose metabolism are reduced. INS-1 ÎČ-cells cultured chronically at high glucose show similar changes in protein expression and reduced glucose-stimulated oxygen consumption: targeted metabolomics reveals impaired metabolism. These data indicate hyperglycaemia induces metabolic changes in ÎČ-cells that markedly reduce mitochondrial metabolism and ATP synthesis. We propose this underlies the progressive failure of ÎČ-cells in diabetes.Peer reviewe

    Flux rope and dynamics of the heliospheric current sheet Study of the Parker Solar Probe and Solar Orbiter conjunction of June 2020

    Get PDF
    Context: Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfvénic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ during the month of June 2020. We used the Alfvén-wave turbulence magnetohydrodynamic solar wind model WindPredict-AW and we performed two 3D simulations based on ADAPT solar magnetograms for this period. Results: We show that the dynamic regions measured by both spacecraft are pervaded by flux ropes close to the HCS. These flux ropes are also present in the simulations, forming at the tip of helmet streamers, that is, at the base of the heliospheric current sheet. The formation mechanism involves a pressure-driven instability followed by a fast tearing reconnection process. We further characterize the 3D spatial structure of helmet streamer born flux ropes, which appears in the simulations to be related to the network of quasi-separatrices

    Medicine in words and numbers: a cross-sectional survey comparing probability assessment scales

    Get PDF
    Contains fulltext : 56355.pdf ( ) (Open Access)Background / In the complex domain of medical decision making, reasoning under uncertainty can benefit from supporting tools. Automated decision support tools often build upon mathematical models, such as Bayesian networks. These networks require probabilities which often have to be assessed by experts in the domain of application. Probability response scales can be used to support the assessment process. We compare assessments obtained with different types of response scale. Methods / General practitioners (GPs) gave assessments on and preferences for three different probability response scales: a numerical scale, a scale with only verbal labels, and a combined verbal-numerical scale we had designed ourselves. Standard analyses of variance were performed. Results / No differences in assessments over the three response scales were found. Preferences for type of scale differed: the less experienced GPs preferred the verbal scale, the most experienced preferred the numerical scale, with the groups in between having a preference for the combined verbal-numerical scale. Conclusion / We conclude that all three response scales are equally suitable for supporting probability assessment. The combined verbal-numerical scale is a good choice for aiding the process, since it offers numerical labels to those who prefer numbers and verbal labels to those who prefer words, and accommodates both more and less experienced professionals.8 p

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Histopathological Changes and Clinical Responses of Buruli Ulcer Plaque Lesions during Chemotherapy: A Role for Surgical Removal of Necrotic Tissue?

    Get PDF
    The tropical necrotizing skin disease Buruli ulcer (BU) caused by Mycobacterium ulcerans is associated with extensive tissue destruction and local immunosuppression caused by the macrolide exotoxin mycolactone. Chemotherapy with a combination of rifampicin and streptomycin for 8 weeks is the currently recommended treatment for all types of BU lesions, including both ulcerative and non-ulcerative stages (plaques, nodules and edema). Our histopathological analysis of twelve BU plaque lesions revealed extensive destruction of sub-cutaneous tissue. This frequently led to ulceration during antibiotic treatment. This should not be mistaken as a failure of the antimycobacterial chemotherapy, since we found no evidence for the persistence of active infection foci. Large necrotic areas were found to persist even after completion of antibiotic treatment. These may disturb wound healing and the role of wound debridement should therefore be formally tested in a clinical trial setting

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    • 

    corecore