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Abstract

Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources
given by the expectation value of the stress-energy tensor of quantum fields, stochastic semi-
classical gravity is based on the Einstein-Langevin equation, which has in addition sources
due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-
valued) stress-energy bi-tensor which describes the fluctuations of quantum matter fields in
curved spacetimes. In the first part, we describe the fundamentals of this new theory via two
approaches: the axiomatic and the functional. The axiomatic approach is useful to see the
structure of the theory from the framework of semiclassical gravity, showing the link from the
mean value of the stress-energy tensor to their correlation functions. The functional approach
uses the Feynman—Vernon influence functional and the Schwinger—Keldysh closed-time-path
effective action methods which are convenient for computations. It also brings out the open
systems concepts and the statistical and stochastic contents of the theory such as dissipation,
fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy
bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at
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two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the
quantum field’s Green function. In the second part, we describe three applications of stochas-
tic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer
an analytical solution of the Einstein—Langevin equation and compute the two-point corre-
lation functions for the linearized Einstein tensor and for the metric perturbations. Second,
we discuss structure formation from the stochastic gravity viewpoint, which can go beyond
the standard treatment by incorporating the full quantum effect of the inflaton fluctuations.
Third, we discuss the backreaction of Hawking radiation in the gravitational background of
a quasi-static black hole (enclosed in a box). We derive a fluctuation-dissipation relation
between the fluctuations in the radiation and the dissipative dynamics of metric fluctuations.
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1 Overview

Stochastic semiclassical gravity! is a theory developed in the 1990s using semiclassical gravity
(quantum fields in classical spacetimes, solved self-consistently) as the starting point and aiming at
a theory of quantum gravity as the goal. While semiclassical gravity is based on the semiclassical
Einstein equation with the source given by the expectation value of the stress-energy tensor of
quantum fields, stochastic gravity includes also its fluctuations in a new stochastic semiclassical or
the Einstein—-Langevin equation. If the centerpiece in semiclassical gravity theory is the vacuum
expectation value of the stress-energy tensor of a quantum field, and the central issues being
how well the vacuum is defined and how the divergences can be controlled by regularization and
renormalization, the centerpiece in stochastic semiclassical gravity theory is the stress-energy bi-
tensor and its expectation value known as the noise kernel. The mathematical properties of this
quantity and its physical content in relation to the behavior of fluctuations of quantum fields in
curved spacetimes are the central issues of this new theory. How they induce metric fluctuations
and seed the structures of the universe, how they affect the black hole horizons and the backreaction
of Hawking radiance in black hole dynamics, including implications on trans-Planckian physics, are
new horizons to explore. On the theoretical issues, stochastic gravity is the necessary foundation to
investigate the validity of semiclassical gravity and the viability of inflationary cosmology based on
the appearance and sustenance of a vacuum energy-dominated phase. It is also a useful beachhead
supported by well-established low energy (sub-Planckian) physics to explore the connection with
high energy (Planckian) physics in the realm of quantum gravity.

In this review we summarize major work on and results of this theory since 1998. It is in the
nature of a progress report rather than a review. In fact we will have room only to discuss a handful
of topics of basic importance. A review of ideas leading to stochastic gravity and further develop-
ments originating from it can be found in [149, 154]; a set of lectures which include a discussion of
the issue of the validity of semiclassical gravity in [168]; a pedagogical introduction of stochastic
gravity theory with a more complete treatment of backreaction problems in cosmology and black
holes in [169]. A comprehensive formal description of the fundamentals is given in [207, ] while
that of the noise kernel in arbitrary spacetimes in [208, , ]. Here we will try to mention all
related work so the reader can at least trace out the parallel and sequential developments. The
references at the end of each topic below are representative work where one can seek out further
treatments.

Stochastic gravity theory is built on three pillars: general relativity, quantum fields, and
nonequilibrium statistical mechanics. The first two uphold semiclassical gravity, the last two
span statistical field theory. Strictly speaking one can understand a great deal without appealing
to statistical mechanics, and we will try to do so here. But concepts such as quantum open sys-
tems [71, 200, 291] and techniques such as the influence functional [39, 88] (which is related to the
closed-time-path effective action [257, 11, , 66, , 41, 70, 76, , 39, , ]) were a great
help in our understanding of the physical meaning of issues involved toward the construction of this
new theory, foremost because quantum fluctuations and correlation have become the focus. Quan-
tum statistical field theory and the statistical mechanics of quantum field theory [40, 42, 44, 46] also
aided us in searching for the connection with quantum gravity through the retrieval of correlations
and coherence. We show the scope of stochastic gravity as follows:

1We will often use the shortened term stochastic gravity as there is no confusion as to the nature and source of
stochasticity in gravity being induced from the quantum fields and not a priori from the classical spacetime.
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1 Ingredients:

(a) From general relativity [215, 285] to semiclassical gravity.
(b) Quantum field theory in curved spacetimes [25, 100, 286, 113]:
i. Stress-energy tensor: Regularization and renormalization.
ii. Self-consistent solution: Backreaction problems [203, 115, 158, 159, 124, 3, 4].
iii. Effective action: Closed time path, initial value formulation [257, 11, 184, 66, 272,
41, 70, 76, 181, 39, 182, 236].
iv. Equation of motion: Real and causal.
(¢) Nonequilibrium statistical mechanics:
i. Open quantum systems [71, 200, 291].
ii. Influence functional: Stochastic equations [39].

iii. Noise and decoherence: Quantum to classical transition [303, 304, 305, 306, 180,
5, 83, 120, 122, 30, 239,

[
33, 279, 307, 109, 114, 221, 222, 223, 224, 225, 226, 105, 12!
278,170,141,112,121761,62,160,180,187,173]

)

(d) Decoherence in quantum cosmology and emergence of classical spacetimes [188, 119,
228, 150, 36, 37, 160].

2 Theory:

(a) Dissipation from particle creation [76, 181, 39,

182, 236, 57);
backreaction as fluctuation-dissipation relatlon (FDR) [ 67

67].

(b) Noise from fluctuations of quantum fields [149, 151, 43].

(c¢) Einstein—Langevin equations [43, 157, 167, 58, 59, 38, 202, 207, 208, 200].
(d) Metric fluctuations in Minkowski spacetime [209].

3 Issues:

(a) Validity of semiclassical gravity [163, 243].
(b) Viability of vacuum dominance and 1nﬂat10nary cosmology.

(c) Stress-energy bi-tensor and noise kernel: Regularization reassessed [244, 245].
4 Applications: Early universe and black holes:
(a

)
(b) Black hole horizon fluctuations: Spontaneous/active versus induced/passive [94, 294,
267, 268, 14, 15, 211, 232, 245].

Wave propagation in stochastic geometry [166].

(¢) Noise induced inflation [50].

(d) Structure formation [15, 213, 212, 51 ,2 1];
trace anomaly-driven inflation [269, 280, 132].

(e) Black hole backreaction as FDR [60, 258, 259, 217, 164, 54, 55, 264].

5 Related Topics:
(a) Metric fluctuations and trans-Planckian problem [14, 15, 211, 232, 219].
(b) Spacetime fam [62, 63, 101, 102, 103].

(¢) Universal ‘metric conductance’ fluctuations [261].

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-3


http://www.livingreviews.org/lrr-2004-3

Stochastic Gravity: Theory and Applications 9

6 Ideas:

(a) General relativity as geometro-hydrodynamics [146].
(b) Semiclassical gravity as mesoscopic physics [153].
(¢) From stochastic to quantum gravity:

i. Via correlation hierarchy of interacting quantum fields [154, 42, 16, 155].
ii. Possible relation to string theory and matrix theory.

We list only the latest work in the respective topics above describing ongoing research. The
reader should consult the references therein for earlier work and the background material. We do
not seek a complete coverage here, but will discuss only the selected topics in theory, issues, and
applications. We use the (4,4, +) sign conventions of [215, 285], and units in which ¢ = h = 1.
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2 From Semiclassical to Stochastic Gravity

There are three main steps that lead to the recent development of stochastic gravity. The first step
begins with quantum field theory in curved spacetime [75, 25, , , ], which describes the
behavior of quantum matter fields propagating in a specified (not dynamically determined by the
quantum matter field as source) background gravitational field. In this theory the gravitational field
is given by the classical spacetime metric determined from classical sources by the classical Einstein
equations, and the quantum fields propagate as test fields in such a spacetime. An important
process described by quantum field theory in curved spacetime is indeed particle creation from the
vacuum, and effects of vacuum fluctuations and polarizations, in the early universe [234, , ,

, , 21,22, 23,75, 96, 65], and Hawking radiation in black holes [130, , , , ].

The second step in the description of the interaction of gravity with quantum fields is backreac-
tion, i.e., the effect of the quantum fields on the spacetime geometry. The source here is the expec-
tation value of the stress-energy operator for the matter fields in some quantum state in the space-
time, a classical observable. However, since this object is quadratic in the field operators, which
are only well defined as distributions on the spacetime, it involves ill defined quantities. It contains
ultraviolet divergences, the removal of which requires a renormalization procedure [75, 67, 68]. The
final expectation value of the stress-energy operator using a reasonable regularization technique is
essentially unique, modulo some terms which depend on the spacetime curvature and which are
independent of the quantum state. This uniqueness was proved by Wald [283, ] who investi-
gated the criteria that a physically meaningful expectation value of the stress-energy tensor ought
to satisfy.

The theory obtained from a self-consistent solution of the geometry of the spacetime and the
quantum field is known as semiclassical gravity. Incorporating the backreaction of the quantum
matter field on the spacetime is thus the central task in semiclassical gravity. One assumes a general
class of spacetime where the quantum fields live in and act on, and seek a solution which satisfies si-
multaneously the Einstein equation for the spacetime and the field equations for the quantum fields.
The Einstein equation which has the expectation value of the stress-energy operator of the quantum
matter field as the source is known as the semiclassical Finstein equation. Semiclassical gravity was
first investigated in cosmological backreaction problems [203, , , , , 3, 4, , 90, l;
an example is the damping of anisotropy in Bianchi universes by the backreaction of vacuum
particle creation. Using the effect of quantum field processes such as particle creation to ex-
plain why the universe is so isotropic at the present was investigated in the context of chaotic
cosmology [214, 19, 20] in the late 1970s prior to the inflationary cosmology proposal of the
1980s [117, 2, , ], which assumes the vacuum expectation value of an inflaton field as the
source, another, perhaps more well-known, example of semiclassical gravity.

2.1 The importance of quantum fluctuations

For a free quantum field, semiclassical gravity is fairly well understood. The theory is in some sense
unique, since the only reasonable c-number stress-energy tensor that one may construct [283, ]
with the stress-energy operator is a renormalized expectation value. However, the scope and
limitations of the theory are not so well understood. It is expected that the semiclassical theory
would break down at the Planck scale. One can conceivably assume that it would also break
down when the fluctuations of the stress-energy operator are large [92, ]. Calculations of the
fluctuations of the energy density for Minkowski, Casimir and hot flat spaces as well as Einstein
and de Sitter universes are available [194, , , , , , , , , , , , 69].
It is less clear, however, how to quantify what a large fluctuation is, and different criteria have
been proposed [194, 93, 95, , , 9, 10]. The issue of the validity of the semiclassical gravity
viewed in the light of quantum fluctuations is summarized in our Erice lectures [168]. One can see
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http://www.livingreviews.org/lrr-2004-3


http://www.livingreviews.org/lrr-2004-3

Stochastic Gravity: Theory and Applications 11

the essence of the problem by the following example inspired by Ford [92].

Let us assume a quantum state formed by an isolated system which consists of a superposition
with equal amplitude of one configuration of mass M with the center of mass at X;, and another
configuration of the same mass with the center of mass at X5. The semiclassical theory as described
by the semiclassical Einstein equation predicts that the center of mass of the gravitational field of
the system is centered at %(Xl + X3). However, one would expect that if we send a succession of
test particles to probe the gravitational field of the above system, half of the time they would react
to a gravitational field of mass M centered at X; and half of the time to the field centered at Xs.
The two predictions are clearly different; note that the fluctuation in the position of the center
of masses is of the order of (X; — X3)2. Although this example raises the issue of how to place
the importance of fluctuations to the mean, a word of caution should be added to the effect that
it should not be taken too literally. In fact, if the previous masses are macroscopic, the quantum
system decoheres very quickly [300, ] and instead of being described by a pure quantum state
it is described by a density matrix which diagonalizes in a certain pointer basis. For observables
associated to such a pointer basis, the density matrix description is equivalent to that provided by
a statistical ensemble. The results will differ, in any case, from the semiclassical prediction.

In other words, one would expect that a stochastic source that describes the quantum fluctu-
ations should enter into the semiclassical equations. A significant step in this direction was made
in [149], where it was proposed to view the backreaction problem in the framework of an open quan-
tum system: the quantum fields seen as the “environment” and the gravitational field as the “sys-
tem”. Following this proposal a systematic study of the connection between semiclassical gravity
and open quantum systems resulted in the development of a new conceptual and technical frame-
work where (semiclassical) Einstein-Langevin equations were derived [43, , , b8, 59, 38, ].
The key technical factor to most of these results was the use of the influence functional method of
Feynman and Vernon [39], when only the coarse-grained effect of the environment on the system
is of interest. Note that the word semiclassical put in parentheses refers to the fact that the noise
source in the Einstein-Langevin equation arises from the quantum field, while the background
spacetime is classical; generally we will not carry this word since there is no confusion that the
source which contributes to the stochastic features of this theory comes from quantum fields.

In the language of the consistent histories formulation of quantum mechanies [114, , , ,

) ) ) ) ) ) ) b ) ) ) ) ) ) ) ) b ) ) ) ]
for the existence of a semiclassical regime for the dynamics of the system, one needs two re-
quirements: The first is decoherence, which guarantees that probabilities can be consistently
assigned to histories describing the evolution of the system, and the second is that these prob-
abilities should peak near histories which correspond to solutions of classical equations of mo-
tion. The effect of the environment is crucial, on the one hand, to provide decoherence and,
on the other hand, to produce both dissipation and noise to the system through backreaction,
thus inducing a semiclassical stochastic dynamics on the system. As shown by different au-
thors [106, , , , , , 33, , , ], indeed over a long history predating the
current revival of decoherence, stochastic semiclassical equations are obtained in an open quantum
system after a coarse graining of the environmental degrees of freedom and a further coarse grain-
ing in the system variables. It is expected but has not yet been shown that this mechanism could
also work for decoherence and classicalization of the metric field. Thus far, the analogy could
be made formally [206] or under certain assumptions, such as adopting the Born-Oppenheimer
approximation in quantum cosmology [237, ]

An alternative axiomatic approach to the Einstein—Langevin equation without invoking the
open system paradigm was later suggested, based on the formulation of a self-consistent dynamical
equation for a perturbative extension of semiclassical gravity able to account for the lowest order
stress-energy fluctuations of matter fields [207]. It was shown that the same equation could be
derived, in this general case, from the influence functional of Feynman and Vernon [208]. The field
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equation is deduced via an effective action which is computed assuming that the gravitational field
is a c-number. The important new element in the derivation of the Einstein—Langevin equation,
and of the stochastic gravity theory, is the physical observable that measures the stress-energy
fluctuations, namely, the expectation value of the symmetrized bi-tensor constructed with the
stress-energy tensor operator: the noise kernel. It is interesting to note that the Einstein—Langevin
equation can also be understood as a useful intermediary tool to compute symmetrized two-point
correlations of the quantum metric perturbations on the semiclassical background, independent of
a suitable classicalization mechanism [255].

Living Reviews in Relativity
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3 The Einstein—Langevin Equation: Axiomatic Approach

In this section we introduce stochastic semiclassical gravity, or stochastic gravity for short, in an
axiomatic way. It is introduced as an extension of semiclassical gravity motivated by the search of
self-consistent equations which describe the backreaction of the quantum stress-energy fluctuations
on the gravitational field [207].

3.1 Semiclassical gravity

Semiclassical gravity describes the interaction of a classical gravitational field with quantum matter
fields. This theory can be formally derived as the leading 1/N approximation of quantum gravity
interacting with N independent and identical free quantum fields [142, , , | which interact
with gravity only. By keeping the value of NG finite, where G is Newton’s gravitational constant,
one arrives at a theory in which formally the gravitational field can be treated as a c-number field
(i.e. quantized at tree level) while matter fields are fully quantized. The semiclassical theory may
be summarized as follows.

Let (M, gap) be a globally hyperbolic four-dimensional spacetime manifold M with metric gqp,
and consider a real scalar quantum field ¢ of mass m propagating on that manifold; we just assume
a scalar field for simplicity. The classical action Sy, for this matter field is given by the functional

Sulgé) = = [ d'ev=g g™ VadTuo + (m® + €R) 67, 1)

where V, is the covariant derivative associated to the metric g3, £ is a coupling parameter between
the field and the scalar curvature of the underlying spacetime R, and g = det gqp.
The field may be quantized in the manifold using the standard canonical quantization formal-

ism [25, , ]. The field operator in the Heisenberg representation ¢ is an operator-valued
distribution solution of the Klein—-Gordon equation, the field equation derived from Equation (1),
(O—m? - €R)) = 0. (2)

We may write the field operator as q@[g; x) to indicate that it is a functional of the metric g,; and a
function of the spacetime point x. This notation will be used also for other operators and tensors.
The classical stress-energy tensor is obtained by functional derivation of this action in the usual

way, T%(z) = (2/v/—9) 6Sm/89ap, leading to
Tg,6] = V'69'0 — 1" (VoVep 4 m?6?) +£ ("D - V'V + G &7, (3)

where 00 = V, V9, and Gy, is the Einstein tensor. With the notation 7% [g, #] we explicitly indicate
that the stress-energy tensor is a functional of the metric g4, and the field ¢.

The next step is to define a stress-energy tensor operator T“b[g; z). Naively one would replace
the classical field ¢[g; ) in the above functional by the quantum operator (ﬁ[g; ), but this procedure
involves taking the product of two distributions at the same spacetime point. This is ill-defined and
we need a regularization procedure. There are several regularization methods which one may use;
one is the point-splitting or point-separation regularization method [67, 68|, in which one introduces
a point y in a neighborhood of the point x and then uses as the regulator the vector tangent at
the point x of the geodesic joining « and y; this method is discussed for instance in [243, , ]
and in Section 5. Another well known method is dimensional regularization in which one works in
arbitrary n dimensions, where n is not necessarily an integer, and then uses as the regulator the
parameter € = n — 4; this method is implicitly used in this section. The regularized stress-energy
operator using the Weyl ordering prescription, i.e. symmetrical ordering, can be written as

7lg) = £ {v"dlg], Vdlgl} + Dlg) g, @
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where D][g] is the differential operator
DY = (¢~ 1/4) g0+ & (R — V). (5)

Note that if dimensional regularization is used, the field operator qg[g;x) propagates in an n-
dimensional spacetime. Once the regularization prescription has been introduced, a regularized
and renormalized stress-energy operator 1% [g; z) may be defined as

TR(g;2) = Tuplg; 2) + FG g5 )1, (6)

which differs from the regularized T, [g; ) by the identity operator times some tensor counterterms
FS[g; ), which depend on the regulator and are local functionals of the metric (see [20%] for
details). The field states can be chosen in such a way that for any pair of physically acceptable
states (i.e., Hadamard states in the sense of [250]), [¢) and |¢), the matrix element (1)|T5|p),
defined as the limit when the regulator takes the physical value is finite and satisfies Wald’s
axioms [100, ]. These counterterms can be extracted from the singular part of a Schwinger—
DeWitt series [100, 67, 68, 31]. The choice of these counterterms is not unique, but this ambiguity
can be absorbed into the renormalized coupling constants which appear in the equations of motion
for the gravitational field.
The semiclassical Einstein equation for the metric g, can then be written as

Gaplg] + Agap — 2(Aap + BBap)lg] = 87G(TR[g]), (7)

where <fo;7 [g]) is the expectation value of the operator Zf’f;) [g, ) after the regulator takes the phys-
ical value in some physically acceptable state of the field on (M, gap). Note that both the stress
tensor and the quantum state are functionals of the metric, hence the notation. The parameters
G, A, «, and (3 are respectively the renormalized coupling constants, the gravitational constant,
the cosmological constant, and two dimensionless coupling constants which are zero in the classical
Einstein equation. These constants must be understood as the result of “dressing” the bare con-
stants which appear in the classical action before renormalization. The values of these constants
must be determined by experiment. The left-hand side of Equation (7) may be derived from the
gravitational action

_L 4o /= 1 _ abed 2
Sl = g [ 4'0V70 |57~ A+ aCuaC? 4 57 0

where Cypeq is the Weyl tensor. The tensors A,y and By, come from the functional derivatives with
respect to the metric of the terms quadratic in the curvature in Equation (8); they are explicitly
given by
ab _ 1 9
V=9 09ab

1 - 2 2 1
— anbccdefOCdef _ 2RacdeRdee+ 4RaCRcb_ gngab_ 2|:|Rab + gvava + ggabDR’ (9)

/ d4 /jgccdefccdef

1 9 /
ab 4 2
= — d*v/—gR
v —9g 6gab g
1
= 5gabR2 — 2RR™ 4 2V*V’R — 2¢°*0R, (10)

where Rgpcq and R, are the Riemann and Ricci tensors, respectively. These two tensors are, like
the Einstein and metric tensors, symmetric and divergenceless: V*Ay, = 0 = V®Bgy,.
A solution of semiclassical gravity consists of a spacetime (M, gqp), a quantum field operator

¢[g] which satisfies the evolution equation (2), and a physically acceptable state [¢[g]) for this field,
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such that Equation (7) is satisfied when the expectation value of the renormalized stress-energy
operator is evaluated in this state.

For a free quantum field this theory is robust in the sense that it is self-consistent and fairly well
understood. As long as the gravitational field is assumed to be described by a classical metric, the
above semiclassical Einstein equations seems to be the only plausible dynamical equation for this
metric: The metric couples to matter fields via the stress-energy tensor, and for a given quantum
state the only physically observable c-number stress-energy tensor that one can construct is the
above renormalized expectation value. However, lacking a full quantum gravity theory, the scope
and limits of the theory are not so well understood. It is assumed that the semiclassical theory
should break down at Planck scales, which is when simple order of magnitude estimates suggest that
the quantum effects of gravity should not be ignored, because the energy of a quantum fluctuation
in a Planck size region, as determined by the Heisenberg uncertainty principle, is comparable to
the gravitational energy of that fluctuation.

The theory is expected to break down when the fluctuations of the stress-energy operator are

large [92]. A criterion based on the ratio of the fluctuations to the mean was proposed by Kuo and
Ford [194] (see also work via zeta-function methods [2412, 69]). This proposal was questioned by
Phillips and Hu [163, , ] because it does not contain a scale at which the theory is probed

or how accurately the theory can be resolved. They suggested the use of a smearing scale or point-
separation distance for integrating over the bi-tensor quantities, equivalent to a stipulation of the
resolution level of measurements; see also the response by Ford [93, 95]. A different criterion is
recently suggested by Anderson et al. [9, 10] based on linear response theory. A partial summary
of this issue can be found in our Erice Lectures [168].

3.2 Stochastic gravity

The purpose of stochastic gravity is to extend the semiclassical theory to account for these fluctua-
tions in a self-consistent way. A physical observable that describes these fluctuations to lowest order
is the noise kernel bi-tensor, which is defined through the two point correlation of the stress-energy
operator as

1, .. .
Nabcd[g;x7y) = §<{tab[g;x),tcd[g;y)}>ﬂ (11)

where the curly brackets mean anticommutator, and where
talg; ©) = Tunlgs ©) — (Tulg; 7)) (12)

This bi-tensor can also be written as Nyp a/[g; 2, y), or Ngp rar(x,y) as we do in Section 5, to
emphasize that it is a tensor with respect to the first two indices at the point x and a tensor
with respect to the last two indices at the point y, but we shall not follow this notation here.
The noise kernel is defined in terms of the unrenormalized stress-tensor operator Tab[g; x) on a
given background metric g., thus a regulator is implicitly assumed on the right-hand side of
Equation (11). However, for a linear quantum field the above kernel — the expectation function
of a bi-tensor — is free of ultraviolet divergences because the regularized Ty;[g; x) differs from the
renormalized T% [g; z) by the identity operator times some tensor counterterms (see Equation (6)),
so that in the subtraction (12) the counterterms cancel. Consequently the ultraviolet behavior of
(Top(x)Toq(y)) is the same as that of (T, (2))(Tha(y)), and T,y can be replaced by the renormalized
operator T f; in Equation (11); an alternative proof of this result is given in [244, ]. The noise
kernel should be thought of as a distribution function; the limit of coincidence points has meaning
only in the sense of distributions. The bi-tensor Nypea[g; €, ), or Napea(x,y) for short, is real and
positive semi-definite, as a consequence of Tg}j being self-adjoint. A simple proof is given in [169].

Once the fluctuations of the stress-energy operator have been characterized, we can perturba-
tively extend the semiclassical theory to account for such fluctuations. Thus we will assume that
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the background spacetime metric g, is a solution of the semiclassical Einstein Equations (7), and
we will write the new metric for the extended theory as gqp + hqp, where we will assume that hgy, is
a perturbation to the background solution. The renormalized stress-energy operator and the state
of the quantum field may now be denoted by TR [g+h] and |¢[g+ h)), respectively, and (1% [g+h])
will be the corresponding expectation value.

Let us now introduce a Gaussian stochastic tensor field &,[g; ) defined by the following cor-
relators:

<fab[g;x)>s = 07 <€ab[g;x)€cd[g; y)>s = Nabcd[g; xay)a (13)

where (...)s means statistical average. The symmetry and positive semi-definite property of the
noise kernel guarantees that the stochastic field tensor £,p[g, ), or £.(x) for short, just introduced
is well defined. Note that this stochastic tensor captures only partially the quantum nature of the
fluctuations of the stress-energy operator since it assumes that cumulants of higher order are zero.

An important property of this stochastic tensor is that it is covariantly conserved in the back-
ground spacetime, V% [g; ) = 0. In fact, as a consequence of the conservation of Tg[g] one
can see that VZNgped(z,y) = 0. Taking the divergence in Equation (13) one can then show
that (V%.p)s = 0 and (V2&.p(2)€a(y))s = 0, so that V%, is deterministic and represents with
certainty the zero vector field in M.

For a conformal field, i.e., a field whose classical action is conformally invariant, &, is traceless:
g™¢aplg; ) = 0; thus, for a conformal matter field the stochastic source gives no correction to the
trace anomaly. In fact, from the trace anomaly result which states that g“bf’fg [g] is, in this case, a
local c-number functional of g4 times the identity operator, we have that g% (z) Nupealg; x,y) = 0.
It then follows from Equation (13) that (g%¢.p)s = 0 and (g?(2)€ap(7)Eea(y))s = 0; an alternative
proof based on the point-separation method is given in [244, ] (see also Section 5).

All these properties make it quite natural to incorporate into the Einstein equations the stress-
energy fluctuations by using the stochastic tensor &,;[g; x) as the source of the metric perturbations.
Thus we will write the following equation:

Ganlg + )+ Algan + hav) = 2(as + BBus)lg + h] = 87G (T[g + h) + €wld]) . (14)

This equation is in the form of a (semiclassical) Einstein—Langevin equation; it is a dynamical
equation for the metric perturbation h,, to linear order. It describes the backreaction of the
metric to the quantum fluctuations of the stress-energy tensor of matter fields, and gives a first
order extension to semiclassical gravity as described by the semiclassical Einstein equation (7).

Note that we refer to the Einstein—Langevin equation as a first order extension to the semi-
classical Einstein equation of semiclassical gravity and the lowest level representation of stochastic
gravity. However, stochastic gravity has a much broader meaning, as it refers to the range of
theories based on second and higher order correlation functions. Noise can be defined in effectively
open systems (e.g., correlation noise [46] in the Schwinger-Dyson equation hierarchy) to some de-
gree, but one should not expect the Langevin form to prevail. In this sense we say that stochastic
gravity is the intermediate theory between semiclassical gravity (a mean field theory based on the
expectation values of the energy-momentum tensor of quantum fields) and quantum gravity (the
full hierarchy of correlation functions retaining complete quantum coherence [154, D.

The renormalization of the operator Tab[g + h] is carried out exactly as in the previous case,
now in the perturbed metric gqp + hap. Note that the stochastic source £q4[g; ) is not dynamical;
it is independent of h,; since it describes the fluctuations of the stress tensor on the semiclassical
background ggp.

An important property of the Einstein—Langevin equation is that it is gauge invariant under the
change of hyp by h’ab = hap + Vaolp + Vs, where (? is a stochastic vector field on the background
manifold M. Note that a tensor such as Rqp[g+h| transforms as Rap[g+h'] = Rap[g+h]+ L Rap|g]
to linear order in the perturbations, where L. is the Lie derivative with respect to (*. Now, let us
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write the source tensors in Equations (14) and (7) to the left-hand sides of these equations. If we
substitute h by A’ in this new version of Equation (14), we get the same expression, with h instead
of b/, plus the Lie derivative of the combination of tensors which appear on the left-hand side of
the new Equation (7). This last combination vanishes when Equation (7) is satisfied, i.e., when
the background metric g, is a solution of semiclassical gravity.

A solution of Equation (14) can be formally written as hg[€]. This solution is characterized
by the whole family of its correlation functions. From the statistical average of this equation we
have that g.p + (hab)s must be a solution of the semiclassical Einstein equation linearized around
the background g,p; this solution has been proposed as a test for the validity of the semiclassical
approximation [9, 10]. The fluctuations of the metric around this average are described by the
moments of the stochastic field A, [(] = hap[]— (hap)s- Thus the solutions of the Einstein-Langevin
equation will provide the two-point metric correlation functions (h,(x)hS,(y))s.

We see that whereas the semiclassical theory depends on the expectation value of the point-
defined value of the stress-energy operator, the stochastic theory carries information also on the
two point correlation of the stress-energy operator. We should also emphasize that, even if the
metric fluctuations appears classical and stochastic, their origin is quantum not only because
they are induced by the fluctuations of quantum matter, but also because they are the suitably
coarse-grained variables left over from the quantum gravity fluctuations after some mechanism
for decoherence and classicalization of the metric field [106, , 83, , , ]. One may,
in fact, derive the stochastic semiclassical theory from a full quantum theory. This was done via
the world-line influence functional method for a moving charged particle in an electromagnetic
field in quantum electrodynamics [178]. From another viewpoint, quite independent of whether a
classicalization mechanism is mandatory or implementable, the Einstein—Langevin equation proves
to be a useful tool to compute the symmetrized two point correlations of the quantum metric
perturbations [255]. This is illustrated in the linear toy model discussed in [169], which has features
of some quantum Brownian models [49, 47, 48].
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4 The Einstein—Langevin Equation: Functional Approach

The Einstein-Langevin equation (14) may also be derived by a method based on functional tech-
niques [208]. Here we will summarize these techniques starting with semiclassical gravity.

In semiclassical gravity functional methods were used to study the backreaction of quantum
fields in cosmological models [123, 90, ]. The primary advantage of the effective action approach
is, in addition to the well-known fact that it is easy to introduce perturbation schemes like loop
expansion and nPI formalisms, that it yields a fully self-consistent solution. For a general discussion
in the semiclassical context of these two approaches, equation of motion versus effective action, see,
e.g., the work of Hu and Parker (1978) versus Hartle and Hu (1979) in [203, 115, 158, 159, 124, 3, 4].
See also comments in Sec. 5.6 of [169] on the black hole backreaction problem comparing the
approach by York et al. [297, , | versus that of Sinha, Raval, and Hu [264].

The well known in-out effective action method treated in textbooks, however, led to equations of
motion which were not real because they were tailored to compute transition elements of quantum
operators rather than expectation values. The correct technique to use for the backreaction problem
is the Schwinger—Keldysh closed-time-path (CTP) or ‘in-in’ effective action [257, 11, , 66, ,

, 70]. These techniques were adapted to the gravitational context [70, , 39, , , 57] and
applied to different problems in cosmology. One could deduce the semiclassical Einstein equation
from the CTP effective action for the gravitational field (at tree level) with quantum matter fields.

Furthermore, in this case the CTP functional formalism turns out to be related [272, 43, 58, ,

, b4, 55, , , , ] to the influence functional formalism of Feynman and Vernon [39],
since the full quantum system may be understood as consisting of a distinguished subsystem
(the “system” of interest) interacting with the remaining degrees of freedom (the environment).
Integrating out the environment variables in a CTP path integral yields the influence functional,

from which one can define an effective action for the dynamics of the system [43, , , ]. This
approach to semiclassical gravity is motivated by the observation [149] that in some open quantum
systems classicalization and decoherence [303, , , , , 33, , , ] on the system

may be brought about by interaction with an environment, the environment being in this case the
matter fields and some “high-momentum” gravitational modes [188, , , , 36, 37, , ].
Unfortunately, since the form of a complete quantum theory of gravity interacting with matter
is unknown, we do not know what these “high-momentum” gravitational modes are. Such a
fundamental quantum theory might not even be a field theory, in which case the metric and scalar
fields would not be fundamental objects [154]. Thus, in this case, we cannot attempt to evaluate
the influence action of Feynman and Vernon starting from the fundamental quantum theory and
performing the path integrations in the environment variables. Instead, we introduce the influence
action for an effective quantum field theory of gravity and matter [79, 78, 77, 80, , , ], in
which such “high-momentum” gravitational modes are assumed to have already been “integrated
out.”

4.1 Influence action for semiclassical gravity

Let us formulate semiclassical gravity in this functional framework. Adopting the usual procedure
of effective field theories [289, , 79, 78, 77, 80, 52], one has to take the effective action for
the metric and the scalar field of the most general local form compatible with general covariance:
Slg, 8] = Sglg]l + Smlg, @] + ..., where Sglg] and Sy,[g, ] are given by Equations (8) and (1),
respectively, and the dots stand for terms of order higher than two in the curvature and in the
number of derivatives of the scalar field. Here, we shall neglect the higher order terms as well as
self-interaction terms for the scalar field. The second order terms are necessary to renormalize
one-loop ultraviolet divergences of the scalar field stress-energy tensor, as we have already seen.
Since M is a globally hyperbolic manifold, we can foliate it by a family of ¢ = const. Cauchy

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-3


http://www.livingreviews.org/lrr-2004-3

Stochastic Gravity: Theory and Applications 19

hypersurfaces ¥;, and we will indicate the initial and final times by t; and t¢, respectively.

The influence functional corresponding to the action (1) describing a scalar field in a spacetime
(coupled to a metric field) may be introduced as a functional of two copies of the metric, denoted
by gib and g_,, which coincide at some final time ¢ = #;. Let us assume that, in the quantum
effective theory, the state of the full system (the scalar and the metric fields) in the Schrodinger
picture at the initial time ¢ = ¢; can be described by a density operator which can be written as
the tensor product of two operators on the Hilbert spaces of the metric and of the scalar field. Let
pi(t) = pi (¢4 (t;), d_(1;)] be the matrix element of the density operator p°(t;) describing the initial
state of the scalar field. The Feynman—Vernon influence functional is defined as the following path
integral over the two copies of the scalar field:

Fielgt] = /D¢+ Dé_ pi(t:)5 [0 (te) — 6 (tr)] e (Smlo 041 Smlg™0-1), (15)

Alternatively, the above double path integral can be rewritten as a CTP integral, namely, as a
single path integral in a complex time contour with two different time branches, one going forward
in time from ¢; to tr, and the other going backward in time from ¢; to ¢; (in practice one usually
takes t; — —o00). From this influence functional, the influence action Sir[gt,g~], or Sir[g*] for
short, defined by

Firlg*] = o7, (16)

carries all the information about the environment (the matter fields) relevant to the system (the
gravitational field). Then we can define the CTP effective action for the gravitational field, Seg[g7],
as

Selg™] = Selg*] = Selo™] + Sielg™). (17)

This is the effective action for the classical gravitational field in the CTP formalism. However,
since the gravitational field is treated only at the tree level, this is also the effective classical action
from which the classical equations of motion can be derived.

Expression (15) contains ultraviolet divergences and must be regularized. We shall assume that
dimensional regularization can be applied, that is, it makes sense to dimensionally continue all the
quantities that appear in Equation (15). For this we need to work with the n-dimensional actions
corresponding to Sy, in Equation (15) and Sy in Equation (8). For example, the parameters G,
A, o, and § of Equation (8) are the bare parameters Gg, Ap, ap, and (g, and in Sg[g|, instead
of the square of the Weyl tensor in Equation (8), one must use 2(RapcaR**? — Rqp R??), which by
the Gauss—Bonnet theorem leads to the same equations of motion as the action (8) when n = 4.
The form of S, in n dimensions is suggested by the Schwinger-DeWitt analysis of the ultraviolet
divergences in the matter stress-energy tensor using dimensional regularization. One can then write
the Feynman-—Vernon effective action Seg[g™] in Equation (17) in a form suitable for dimensional
regularization. Since both S, and S; contain second order derivatives of the metric, one should
also add some boundary terms [285, ]. The effect of these terms is to cancel out the boundary
terms which appear when taking variations of Seg[g™] keeping the value of g;Lb and g, fixed at 3
and X;,. Alternatively, in order to obtain the equations of motion for the metric in the semiclassical
regime, we can work with the action terms without boundary terms and neglect all boundary terms
when taking variations with respect to g;tb. From now on, all the functional derivatives with respect
to the metric will be understood in this sense.

The semiclassical Einstein equation (7) can now be derived. Using the definition of the stress-
energy tensor T%(z) = (2/1/—9)0Sm/dgap and the definition of the influence functional, Equa-
tions (15) and (16), we see that

(o lgs )y = 2 S5l (18)

T VW) @) |
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where the expectation value is taken in the n-dimensional spacetime generalization of the state
described by p°(t;). Therefore, differentiating Seg[g™] in Equation (17) with respect to g;b, and
then setting g;rb = g., = Yab, We get the semiclassical Einstein equation in n dimensions. This
equation is then renormalized by absorbing the divergences in the regularized (7%[g]) into the bare
parameters. Taking the limit n — 4 we obtain the physical semiclassical Einstein equation (7).

4.2 Influence action for stochastic gravity

In the spirit of the previous derivation of the Einstein—Langevin equation, we now seek a dynamical
equation for a linear perturbation hg, to the semiclassical metric gqp, solution of Equation (7).
Strictly speaking, if we use dimensional regularization we must consider the n-dimensional version
of that equation. From the results just described, if such an equation were simply a linearized
semiclassical Einstein equation, it could be obtained from an expansion of the effective action
Set[g + hT]. In particular, since, from Equation (18), we have that

2 JSIF [g =+ hi]

—det(g+ @) ohh(®) |._,

(19 + h;z)) = (19)

the expansion of (T%[g + h]) to linear order in hgp, can be obtained from an expansion of the
influence action Sir[g + h*] up to second order in hfb

To perform the expansion of the influence action, we have to compute the first and second order
functional derivatives of Sip[g + hi] and then set hT, op = Py = hap. If we do so using the path
integral representation (15), we can interpret these derivatives as expectation values of operators.
The relevant second order derivatives are

4 528 + h* )
IF[g - ] = —Hg"[g;2,y) — K**[g;2,y) +iN"“[g; 2, y),
V=@ —9() Sh(@)ohy () |
(20)
4 6251F[ £
= —H{"g;2,y) — iN*[g;z,y),
V=9@)\/=g(y) 0hf(2)hy(y) |, ., A
where
1,.. .
Nelgw,y) = 5 ({I*g:2), Eg:0) )
HE"[g;2,y) = Im (T* (T [g:2)T*"[g:)) ) .
1 ~ ~
Hy" g 2,y) = =5 ([T"1gs ), T*giw)| ).
abe —4 52Smlg + h,
K*g;z,y) = =G0 9 d)]’ :
6hab 5hcd( ) @ q@
with £%° defined in Equation (12); [, ] denotes the commutator and { , } the anti-commutator.

Here we use a Weyl ordering prescription for the operators. The symbol T* denotes the following
ordered operations: First, time order the field operators qg and then apply the derivative operators
which appear in each term of the product 79 (x)T°4(y), where T is the functional (3). This
T* “time ordering” arises because we have path integrals containing products of derivatives of
the field, which can be expressed as derivatives of the path integrals which do not contain such
derivatives. Notice, from their definitions, that all the kernels which appear in expressions (20) are
real and also H§"? is free of ultraviolet divergences in the limit n — 4.
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From Equation (18) and (20), since Sir[g,g] = 0 and Sip[g—, g7 = —Sixlg", 97|, we can write
the expansion for the influence action Sir[g 4+ h*] around a background metric gp in terms of the
previous kernels. Taking into account that these kernels satisfy the symmetry relations

Héled(:L', y) — Hgdab(y’ LE), HXde(fE, y) —_ 7Hgdab(y’ I), Kade(I, y) — chab(y’ :17), (21)
and introducing the new kernel
H*(a,y) = HE(x,y) + HL" (2, ), (22)

the expansion of Sip can be finally written as

Sielg +hE) = = [ da/—g(@)(T™[g; 2)) [hap(z)]
-3 /d“x d*y/—g(x)\/=9(y) [has(@)] (H"[g; 2,y) + K*[g; 2,9)) {hea(y)}
4L [y V@G0 B N ) rea)) + O), (2)

where we have used the notation
(hav] = B}, — hy, {hav} = b}, + h,. (24)

From Equations (23) and (19) it is clear that the imaginary part of the influence action does not
contribute to the perturbed semiclassical Einstein equation (the expectation value of the stress-
energy tensor is real), however, as it depends on the noise kernel, it contains information on the
fluctuations of the operator 7[g].

We are now in a position to carry out the derivation of the semiclassical Einstein—Langevin
equation. The procedure is well known [13, , B8, , 26, , ]: Tt consists of deriving a
new “stochastic” effective action from the observation that the effect of the imaginary part of the
influence action (23) on the corresponding influence functional is equivalent to the averaged effect
of the stochastic source €% coupled linearly to the perturbations h;tb. This observation follows
from the identity first invoked by Feynman and Vernon for such purpose:

exp (=5 [ ateaty =590 )] N0 [hcd<y>]) -
[ PP (4 [ atey/=se @ ) ). (25)

where P[¢] is the probability distribution functional of a Gaussian stochastic tensor £ character-
ized by the correlators (13) with N%*°? given by Equation (11), and where the path integration
measure is assumed to be a scalar under diffeomorphisms of (M, gu). The above identity follows
from the identification of the right-hand side of Equation (25) with the characteristic functional
for the stochastic field £%°. The probability distribution functional for £?° is explicitly given by

Ple) = det (2n) 2 exp |- [ dedy/ SN €Nk )] 0
We may now introduce the stochastic effective action as
Slg + 1€ = Sglg + ht] = Sylg + h7] + Sielg + 2 F, €], (27)

where the “stochastic” influence action is defined as

Sielg + W%, €] = Re Siplg + W] + / iz /—g(@) €(x) [hap ()] + O(R3).  (28)
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Note that, in fact, the influence functional can now be written as a statistical average over £2°:
Fielg + 1] = (exp (iSiplg + b+, €])), -
The stochastic equation of motion for A, reads

0S3klg +h*,¢]

TAE )

hE=h

which is the Einstein-Langevin equation (14); notice that only the real part of S contributes
to the expectation value (19). To be precise, we get first the regularized n-dimensional equations
with the bare parameters, with the tensor A% replaced by 2D, where

1 9
V=g 5gab

ab
(Reges R — RegR°*+ OR) — 2R R® g — 2R’ R q+ AR“R,"— 30R + V*V'R.
(30)

Dab

/ d"w /=g (Reaes BT — ReaR*)

S

Of course, when n = 4 these tensors are related, A% = %D“b. After that we renormalize and take
the limit n — 4 to obtain the Einstein—Langevin equations in the physical spacetime.

4.3 Explicit form of the Einstein—Langevin equation

We can write the Einstein-Langevin equation in a more explicit form by working out the expansion
of (T®[g + h]) up to linear order in the perturbation hg,. From Equation (19), we see that this
expansion can be easily obtained from Equation (23). The result is

(Te2lg-+hs ) = (T5lg, @)+ (Tlg, hs )5 / &y /g HE g 2, y)healy) + O(h2). (31)

Here we use a subscript n on a given tensor to indicate that we are explicitly working in n dimen-
sions, as we use dimensional regularization, and we also use the superindex ) to generally indicate
that the tensor is the first order correction, linear in hgp, in a perturbative expansion around the
background ggp.

Using the Klein—Gordon equation (2), and expressions (3) for the stress-energy tensor and the
corresponding operator, we can write

ri(1)a 1 a a a \ e a n
T’ISL) b[gvh] = <2g bhcd - 6chz - 6Zhd) Tnd[g] +F b[gah] ¢31[g}7 (32)

where F[g; h] is the differential operator

1 1
ab: _ ab_iabc
o= (e 7) (wr - gane) o

+§ [vcvahg + vcvbhg _ Dhab _ vavbhg _ gabvcvdhcd + gathg
+ (V*RE + VPRE — Vo0 — 2g°V g + g**V e h3) VE — g®hegVEVY] . (33)

It is understood that indices are raised with the background inverse metric ¢%°, and that all the
covariant derivatives are associated to the metric gqp.
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Substituting Equation (31) into the n-dimensional version of the Einstein-Langevin Equa-
tion (14), taking into account that g, satisfies the semiclassical Einstein equation (7), and substi-
tuting expression (32), we can write the Einstein-Langevin equation in dimensional regularization
as

1 1 1
|:G(1)ab . gabGthCd + Gachz + Gbchg + AB <hab o 2gabhg):|

87TGB 2
40[]3 1)ab 1 ab necd acpb bcya
—? D() _59 D hcd+D h(/+D h’c

_26]3 (B(l)ab _ %g“bBthcd + Bachz + Bbchg)

—(n— ab /] 1 m —(n— abe
—p ¢ 4>f.rb<¢i[g;z)>+§/d yv/—g(y) p= T HE gz, y)hea(y)
_ M—(n—4) va (34)

where the tensors G%°, D% and B are computed from the semiclassical metric g,;, and where
we have omitted the functional dependence on gu, and hgy in G, DWab  BMab anq Fab to
simplify the notation. The parameter p is a mass scale which relates the dimensions of the physical
field ¢ with the dimensions of the corresponding field in n dimensions, ¢, = u("~4/24. Notice
that, in Equation (34), all the ultraviolet divergences in the limit n — 4, which must be removed
by renormalization of the coupling constants, are in <gf§%(x)> and the symmetric part HS“st(x,y)
of the kernel H?°?(z,vy), whereas the kernels N2%°?(z,y) and H3b(z,y) are free of ultraviolet
divergences. If we introduce the bi-tensor F%%°?[g; z,y) defined by

Fpllgia,y) = (619 2) 177 [9:9)) - (35)
where £%° is defined by Equation (12), then the kernels N and Ha can be written as
Nz, y) = Re Fy*Ygiz,y),  HLgiz,y) = Im Fi*g; 2, ), (36)
where we have used that

2 (@) 1)) = ([ (@), ()} + ([ (@), i (w)]),

and the fact that the first term on the right-hand side of this identity is real, whereas the second one
is pure imaginary. Once we perform the renormalization procedure in Equation (34), setting n = 4
will yield the physical Einstein-Langevin equation. Due to the presence of the kernel H2%4(z,y),
this equation will be usually non-local in the metric perturbation. In Section 6 we will carry out an
explicit evaluation of the physical Einstein—Langevin equation which will illustrate the procedure.

4.3.1 The kernels for the vacuum state

When the expectation values in the Einstein—Langevin equation are taken in a vacuum state |0),
such as, for instance, an “in” vacuum, we can be more explicit, since we can write the expectation
values in terms of the Wightman and Feynman functions, defined as

GElgiwy) = 0dnlg: D)dulg:p)l0),  iGr,lgi2.9) = OIT (dulgi)duloiv) ) 100 (37)

These expressions for the kernels in the Einstein—Langevin equation will be very useful for explicit
calculations. To simplify the notation, we omit the functional dependence on the semiclassical
metric gqp, which will be understood in all the expressions below.
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From Equations (36), we see that the kernels N2*“(z,y) and H3"(x,y) are the real and
imaginary parts, respectively, of the bi-tensor F%**4(z,y). From the expression (4) we see that the

stress-energy operator T;:b can be written as a sum of terms of the form { .4, ¢n (z), de;n(x)},

where A, and B, are some differential operators. It then follows that we can express the bi-tensor
Fabed(z y) in terms of the Wightman function as
Ftel(z,y) = VeVy Gl (@, y) Vo VGl (z,y) + VaVyGr (2,y) ViV Gy (2,y)
+2D5" (VG (2, ) VoG (z,y)) + 2D (VG (2, y) VLG (,y))
+2D5" Dy (G2 (x,y)) (38)
where D2 is the differential operator (5). From this expression and the relations (36), we get

expressions for the kernels N,, and Hy, in terms of the Wightman function G} (z,y).
Similarly the kernel H§***(z,y) can be written in terms of the Feynman function as

HE" (0, y) = ~Im | VeV Gr, (2,9) Vi ViGr, (2,9) + ViViGr, (2,4)ViVEGE, (2,y)
—g*(2)VEVyGr, (2.9)VeVyGF, (2.y)
9" W) ViV, Gr, (2,9) Vi VG, (2,y)
450" @) W)V, (2, 9)VIVIGr, (2,9)
+K3 (2VyGr, (2,9)VyGr, (2.y) — 9 (y) VG, (2,9)VEGE, (2,y))
+Ky! (2VEGr, (2,9)ViGr, (2,y) — ¢*(2)V5Gr, (2,9)ViCr, (,y))
+2AUL K (GF, (2.1))] (39)

where K2 is the differential operator

K = € (6" (@) — VIVS + G (a)) — TP (a). (40)

Note that, in the vacuum state |0), the term (¢2(x)) in Equation (34) can also be written as
(62 (2)) = G, (2,2) = G (3, 0).

Finally, the causality of the Einstein—Langevin equation (34) can be explicitly seen as follows.
The non-local terms in that equation are due to the kernel H(z, y) which is defined in Equation (22)
as the sum of Hg(z,y) and Ha(z,y). Now, when the points = and y are spacelike separated,
én(x) and ¢, (y) commute and, thus, G (z,y) = iGp, (z,y) = %<0|{q§n(x),q§n(y)}|0>, which is
real. Hence, from the above expressions, we have that Hgi“l(x,y) = Hggc‘i(ac,y) = 0, and thus
Habed(z y) = 0. This fact is expected since, from the causality of the expectation value of the
stress-energy operator [283], we know that the non-local dependence on the metric perturbation
in the Einstein-Langevin equation, see Equation (14), must be causal. See [169] for an alternative
proof of the causal nature of the Einstein—Langevin equation.
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5 Noise Kernel and Point-Separation

In this section we explore further the properties of the noise kernel and the stress-energy bi-tensor.
Similar to what was done for the stress-energy tensor it is desirable to relate the noise kernel defined
at separated points to the Green function of a quantum field. We pointed out earlier [154] that
field quantities defined at two separated points may possess important information which could
be the starting point for probes into possible extended structures of spacetime. Of more practical
concern is how one can define a finite quantity at one point or in some small region around it from
the noise kernel defined at two separated points. When we refer to, say, the fluctuations of energy
density in ordinary (point-wise) quantum field theory, we are in actuality asking such a question.
This is essential for addressing fundamental issues like

e the validity of semiclassical gravity [194] — e.g., whether the fluctuations to mean ratio is a
correct criterion [163, , 93, 95,9, 10];

e whether the fluctuations in the vacuum energy density which drives some models of infla-
tionary cosmology violates the positive energy condition;

e physical effects of black hole horizon fluctuations and Hawking radiation backreaction — to
begin with, is the fluctuations finite or infinite?

e general relativity as a low energy effective theory in the geometro-hydrodynamic limit towards
a kinetic theory approach to quantum gravity [146, , 155].

Thus, for comparison with ordinary phenomena at low energy we need to find a reasonable
prescription for obtaining a finite quantity of the noise kernel in the limit of ordinary (point-
defined) quantum field theory. Regularization schemes used in obtaining a finite expression for
the stress-energy tensor have been applied to the noise kernel®>. This includes the simple normal
ordering [194, 295] and smeared field operator [243] methods applied to the Minkowski and Casimir
spaces, zeta-function [37, , 3] for spacetimes with an Euclidean section, applied to the Casimir
effect [69] and the Einstein Universe [242], or the covariant point-separation methods applied to
the Minkowski [243], hot flat space and the Schwarzschild spacetime [245]. There are differences
and deliberations on whether it is meaningful to seek a point-wise expression for the noise kernel,
and if so what is the correct way to proceed — e.g., regularization by a subtraction scheme or
by integrating over a test-field. Intuitively the smear field method [243] may better preserve the
integrity of the noise kernel as it provides a sampling of the two point function rather than using
a subtraction scheme which alters its innate properties by forcing a nonlocal quantity into a local
one. More investigation is needed to clarify these points, which bear on important issues like
the validity of semiclassical gravity. We shall set a more modest goal here, to derive a general
expression for the noise kernel for quantum fields in an arbitrary curved spacetime in terms of
Green functions and leave the discussion of point-wise limit to a later date. For this purpose the
covariant point-separation method which highlights the bi-tensor features, when used not as a
regularization scheme, is perhaps closest to the spirit of stochastic gravity.

The task of finding a general expression of the noise-kernel for quantum fields in curved space-
times was carried out by Phillips and Hu in two papers using the “modified” point separation

21t is well-known that several regularization methods can work equally well for the removal of ultraviolet diver-
gences in the stress-energy tensor of quantum fields in curved spacetime. Their mutual relations are known, and
discrepancies explained. This formal structure of regularization schemes for quantum fields in curved spacetime
should remain intact when applied to the regularization of the noise kernel in general curved spacetimes; it is the
meaning and relevance of regularization of the noise kernel which is more of a concern (see comments below). Specific
considerations will of course enter for each method. But for the methods employed so far, such as zeta-function,
point separation, dimensional, smeared-field, applied to simple cases (Casimir, Einstein, thermal fields) there is no
new inconsistency or discrepancy.
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scheme [282, 1, ]. Their first paper [244] begins with a discussion of the procedures for deal-
ing with the quantum stress tensor bi-operator at two separated points, and ends with a general
expression of the noise kernel defined at separated points expressed as products of covariant deriva-
tives up to the fourth order of the quantum field’s Green function. (The stress tensor involves up
to two covariant derivatives.) This result holds for x # y without recourse to renormalization of
the Green function, showing that Ngperar(x,y) is always finite for z # y (and off the light cone
for massless theories). In particular, for a massless conformally coupled free scalar field on a four
dimensional manifold, they computed the trace of the noise kernel at both points and found this
double trace vanishes identically. This implies that there is no stochastic correction to the trace
anomaly for massless conformal fields, in agreement with results arrived at in [13, 58, 208] (see also
Section 3). In their second paper [245] a Gaussian approximation for the Green function (which is
what limits the accuracy of the results) is used to derive finite expressions for two specific classes
of spacetimes, ultrastatic spacetimes, such as the hot flat space, and the conformally- ultrastatic
spacetimes, such as the Schwarzschild spacetime. Again, the validity of these results may depend
on how we view the relevance and meaning of regularization. We will only report the result of
their first paper here.

5.1 Point separation

The point separation scheme introduced in the 1960s by DeWitt [74] was brought to more popular
use in the 1970s in the context of quantum field theory in curved spacetimes [75, (7, (8] as a means
for obtaining a finite quantum stress tensor. Since the stress-energy tensor is built from the product
of a pair of field operators evaluated at a single point, it is not well-defined. In this scheme, one
introduces an artificial separation of the single point x to a pair of closely separated points x and z’.
The problematic terms involving field products such as gZ)(x)z becomes g?)(x)gzg(x’ ), whose expectation
value is well defined. If one is interested in the low energy behavior captured by the point-defined
quantum field theory — as the effort in the 1970s was directed — one takes the coincidence limit.
Once the divergences present are identified, they may be removed (regularization) or moved (by
renormalizing the coupling constants), to produce a well-defined, finite stress tensor at a single
point.

Thus the first order of business is the construction of the stress tensor and then to derive the
symmetric stress-energy tensor two point function, the noise kernel, in terms of the Wightman
Green function. In this section we will use the traditional notation for index tensors in the point-
separation context.

5.1.1 mn-tensors and end-point expansions

An object like the Green function G(z,y) is an example of a bi-scalar: It transforms as scalar
at both points z and y. We can also define a bi-tensor Ty, _q, v;. 01, (z,y): Upon a coordinate
transformation, this transforms as a rank n tensor at x and a rank m tensor at y. We will extend
this up to a quad-tensor T, a,, Vbl ey d i which has support at four points z,y, z’, v/,
transforming as rank nq,no, ng,ng tensors at each of the four points. This also sets the notation
we will use: unprimed indices referring to the tangent space constructed above x, single primed
indices to y, double primed to =’ and triple primed to y’. For each point, there is the covariant
derivative V, at that point. Covariant derivatives at different points commute, and the covariant
derivative at, say, point ' does not act on a bi-tensor defined at, say,  and y:

Tab’;c;d’ - Tab’;d’;c and Tab/;c” =0. (41)

To simplify notation, henceforth we will eliminate the semicolons after the first one for multiple
covariant derivatives at multiple points.
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Having objects defined at different points, the coincident limit is defined as evaluation “on the
diagonal”, in the sense of the spacetime support of the function or tensor, and the usual shorthand
[G(z,y)] = G(z,z) is used. This extends to n-tensors as

|:Ta1“.an1 byl el d’l"...qu =Ty ccan, br.bpy c1oCng dioodny s (42)

i.e., this becomes a rank (n; + ns + ng + ng) tensor at z. The multi-variable chain rule relates
covariant derivatives acting at different points, when we are interested in the coincident limit:

(Tas.cam vyt ) ie = [Taream viotrse] + [Taream b.obrier] - (43)

This result is referred to as Synge’s theorem in this context; we follow Fulling’s discussion [100].
The bi-tensor of parallel transport gab/ is defined such that when it acts on a vector vy at y,
it parallel transports the vector along the geodesics connecting x and y. This allows us to add
vectors and tensors defined at different points. We cannot directly add a vector v, at  and vector
wgy at y. But by using gab/, we can construct the sum v® + gab/wb/. We will also need the obvious

property [gab'} = ga".
The main bi-scalar we need is the world function o(x,y). This is defined as a half of the square
of the geodesic distance between the points x and y. It satisfies the equation

1.
o= §J’po;p. (44)

Often in the literature, a covariant derivative is implied when the world function appears with
indices, 0% = g%, i.e., taking the covariant derivative at x, while 0% means the covariant derivative
at y. This is done since the vector —c“ is the tangent vector to the geodesic with length equal
to the distance between z and y. As o records information about distance and direction for the
two points, this makes it ideal for constructing a series expansion of a bi-scalar. The end point
expansion of a bi-scalar S(x,y) is of the form

S(z,y) = A© 4 U”AI(}) + apUqu(fl) + UpaqUTAg’])r + UPU(IO'TO‘SAZ(;}I)TS +..., (45)
where, following our convention, the expansion tensors AE{;?_M with unprimed indices have support
at = (hence the name end point expansion). Only the symmetric part of these tensors contribute
to the expansion. For the purposes of multiplying series expansions it is convenient to separate the
distance dependence from the direction dependence. This is done by introducing the unit vector
p® = 0%/+/20. Then the series expansion can be written

S(z,y) = A® + 63 AD 4 04D 1 534G 4 524 4 (46)

The expansion scalars are related, via A = 27/ 21411(,711_)_,][,,1171’1 ...pPn, to the expansion tensors.
The last object we need is the VanVieck—-Morette determinant D(z,y), defined as D(z,y) =
—det (—0,4p). The related bi-scalar

9(x)g(y)

satisfies the equation
AY2 (4 — g, P) —2AY2 0P =0 (48)

with the boundary condition [A1/2] = 1.
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Further details on these objects and discussions of the definitions and properties are contained
in [67, 68] and [240]. There it is shown how the defining equations for o and A'/? are used to
determine the coincident limit expression for the various covariant derivatives of the world function
([0.a], [0.ab], etc.) and how the defining differential equation for A/ can be used to determine

the series expansion of A2 We show how the expansion tensors Agll)a are determined in
terms of the coincident limits of covariant derivatives of the bi-scalar S(z,y). ([240] details how
point separation can be implemented on the computer to provide easy access to a wider range of
applications involving higher derivatives of the curvature tensors.)

5.2 Stress-energy bi-tensor operator and noise kernel

Even though we believe that the point-separated results are more basic in the sense that it reflects
a deeper structure of the quantum theory of spacetime, we will nevertheless start with quantities
defined at one point, because they are what enter in conventional quantum field theory. We will use
point separation to introduce the bi-quantities. The key issue here is thus the distinction between
point-defined (pt) and point-separated (bi) quantities.

For a free classical scalar field ¢ with the action Sy,[g, ¢] defined in Equation (1), the classical
stress-energy tensor is

Tab = (1 - 2§)¢;a¢;b + <2£ - ;) qs;p(b;p Gad + 2€¢ (¢;pp - ¢;ab gab)

1 1
+¢2£ (Rab - 2Rgab> - §m2¢29ab; (49)

which is equivalent to the tensor of Equation (3), but written in a slightly different form for
convenience. When we make the transition to quantum field theory, we promote the field ¢(x) to a
field operator (;AS(x) The fundamental problem of defining a quantum operator for the stress tensor
is immediately visible: The field operator appears quadratically. Since ¢E(:v) is an operator-valued
distribution, products at a single point are not well-defined. But if the product is point separated,
%(z) — ¢(x)¢(a'), they are finite and well-defined.

Let us first seek a point-separated extension of these classical quantities and then consider
the quantum field operators. Point separation is symmetrically extended to products of covariant

derivatives of the field according to

(b:0) (P0) —
o} (¢;ab) -

(97 VoV + 007 Va Ve ) 6l2) ("),

DN = N =

(VaVo+ g 07 Vi Vo ) b)),

The bi-vector of parallel displacement ga“/ (x,2") is included so that we may have objects that are
rank 2 tensors at x and scalars at z’.
To carry out point separation on Equation (49), we first define the differential operator

1 !’ / ]_ !
Ty = 3 (1-2¢) (Qaa Va Vi + g’ vavb’) + (25 - 2) 9av gt VoV

’ / / 1 ].
€ (VaVo+ 9" 6" Var V) + €9 (VeV° + Ve V) + ¢ (Rab - ZgabR> — 5m*gass (50)

from which we obtain the classical stress tensor as

Top(w) = lim Topg(w)(2"). (51)
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That the classical tensor field no longer appears as a product of scalar fields at a single point allows
a smooth transition to the quantum tensor field. From the viewpoint of the stress tensor, the
separation of points is an artificial construct, so when promoting the classical field to a quantum
one, neither point should be favored. The product of field configurations is taken to be the
symmetrized operator product, denoted by curly brackets:

B)6(y) — 5 {3().80) } = 5 (H)dw) + dw)d(x)) (52)

With this, the point separated stress-energy tensor operator is defined as

T, ') = 5T {(a), 30} (53)

While the classical stress tensor was defined at the coincidence limit ' — x, we cannot attach
any physical meaning to the quantum stress tensor at one point until the issue of regularization is
dealt with, which will happen in the next section. For now, we will maintain point separation so
as to have a mathematically meaningful operator.

The expectation value of the point-separated stress tensor can now be taken. This amounts
to replacing the field operators by their expectation value, which is given by the Hadamard (or
Schwinger) function

GO (a,a) = ({dla), o)} ) (54)
and the point-separated stress tensor is defined as

(Fus(a, ) = 5T GO (), (55)

where, since 7y, is a differential operator, it can be taken “outside” the expectation value. The
expectation value of the point-separated quantum stress tensor for a free, massless (m = 0) con-
formally coupled (£ = %) scalar field on a four dimension spacetime with scalar curvature R is

~ 1 ’ ’ 1 ’
<Tab($>xl)> = 6 (gp b G(1)§P'a +9"a G(l)m’b) - ﬁgp q G(l);p’qgab

1 ’ ’ 1 /
15 (7700”0 GV + GV a) + 35 (6" + GV ) g
1 1
10 21
+55G <Rab R gab> . (56)

5.2.1 Finiteness of the noise kernel

We now turn our attention to the noise kernel introduced in Equation (11), which is the sym-
metrized product of the (mean subtracted) stress tensor operator:

$Napea (2,9) = ({ Tun(@) = (Tun(@) ) Toar () = (T ) })
= ({Tan(@). Tea () }) =2 (Tan(@)) (Tea (0) ) (57)

Since Tab(m) defined at one point can be ill-behaved as it is generally divergent, one can question
the soundness of these quantities. But as will be shown later, the noise kernel is finite for y # z. All
field operator products present in the first expectation value that could be divergent, are canceled
by similar products in the second term. We will replace each of the stress tensor operators in
the above expression for the noise kernel by their point separated versions, effectively separating
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the two points (z,y) into the four points (z,2',y,y’). This will allow us to express the noise
kernel in terms of a pair of differential operators acting on a combination of four and two point
functions. Wick’s theorem will allow the four point functions to be re-expressed in terms of two
point functions. From this we see that all possible divergences for y # x will cancel. When the
coincidence limit is taken, divergences do occur. The above procedure will allow us to isolate the
divergences and to obtain a finite result.

Taking the point-separated quantities as more basic, one should replace each of the stress tensor
operators in the above with the corresponding point separated version (53), with 7, acting at x
and z’ and 7.4 acting at y and 3. In this framework the noise kernel is defined as

8Nab,c’d’ (‘Ta y) = lim lim %blfc’d/ G(Ia xlv Y, y,)a (58)

' —xy —y

where the four point function is

G’ w9 = 7 [({{3@). 86} {ow). a6} ) —2({d@). 66} ) ({o). b))
(59)

We assume that the pairs (z,2’) and (y,y’) are each within their respective Riemann normal
coordinate neighborhoods so as to avoid problems that possible geodesic caustics might be present.
When we later turn our attention to computing the limit y — x, after issues of regularization are
addressed, we will want to assume that all four points are within the same Riemann normal
coordinate neighborhood.

Wick’s theorem, for the case of free fields which we are considering, gives the simple product
four point function in terms of a sum of products of Wightman functions (we use the shorthand

notation G,y = G (z,y) = <¢§($) Qg(y»)

(9(2) 64) 9(a) S) ) = Gyt Car + Cawr Gy + Gy Gy (60)

Expanding out the anti-commutators in Equation (59) and applying Wick’s theorem, the four point
function becomes

G(z,2",y,Y") = Gay Gury + Goy Gary + Gyar Gy + Gyo Gy (61)

We can now easily see that the noise kernel defined via this function is indeed well defined for the
limit (z',y") — (2,y):
G(z,z,y,y) =2 (Giy + Gix) . (62)

From this we can see that the noise kernel is also well defined for y # x; any divergence present
in the first expectation value of Equation (59) have been cancelled by those present in the pair of
Green functions in the second term, in agreement with the results of Section 3.

5.2.2 Explicit form of the noise kernel

We will let the points separated for a while so we can keep track of which covariant derivative
acts on which arguments of which Wightman function. As an example (the complete calculation
is quite long), consider the result of the first set of covariant derivative operators in the differential
operator (50), from both 7, and 7. g, acting on G(x,2’,y,y’):

]_ 1/ /! 117 1’

7 (-2 (gap Vo Vi + goP vpnva) (gc/q VoV + ga vqmvcl) Gz, y,y).  (63)
(Our notation is that V, acts at z, Vo at y, Vi at 2/, and Vgr at 3'.) Expanding out the
differential operator above, we can determine which derivatives act on which Wightman function:
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1"

"
X |:gc/p gq a (Gry’;bp”’ Gm/y;q”d’ —+ Gry;bd/ Gm’y’;q”p’”

—+ ny/;q//d/ Gy’x;bp'” —+ ny;bd/ Gy/x/;q”p’”)

(1-2¢)?
4

+gd’pmgq”a (Gayiop Garyigrer + Gayver Garyrsqrp
+ Gyarigre Gyapp + Gyasper Gyrariqrp)
moon
907 9% b (Gayriap Gorysqrar + Goyiadr Garysq iy
+ Gyargrar Gyrasap + Gyasadr Gy’a:’;q”p'”)

17 "
+gd/p gq b (Gmy’;ap”’ Gm/y;q”c/ + GIy;ac/ Gm’y’;q”p’”
+ Gyz’;q”c/ Gy’z;ap”’ —+ Gyw;ac' Gy/a:/;q”p’”) . (64)

If we now let ' — z and ¢y’ — y, the contribution to the noise kernel is (including the factor of %
present in the definition of the noise kernel):

|:(]- - 25)2 (Gmy;ad’ Gzy;bc/ + ny;ac’ Gzy;bd’) + (]- - 25)2 (Gyat;ad/ny;bc’ + Gym;ac’ Gyr;bd/)i| . (65)

ool —

That this term can be written as the sum of a part involving G, and one involving G, is a
general property of the entire noise kernel. It thus takes the form

Nabc’d’ ('r7 y) = Nabc’d’ [G+(J?, y)] + Nabc’d’ [G-i- (ya -T)] . (66)

We will present the form of the functional Ny [G] shortly. First we note, that for = and y time-
like separated, the above split of the noise kernel allows us to express it in terms of the Feynman
(time ordered) Green function Gr(z,y) and the Dyson (anti-time ordered) Green function Gp(z, y):

Naverar (%,Yy) = Naperar [Gr(2,y)] + Naverar [Gp (2, )] - (67)

This can be connected with the zeta function approach to this problem [2412] as follows: Recall
when the quantum stress tensor fluctuations determined in the Euclidean section is analytically
continued back to Lorentzian signature (7 — it), the time ordered product results. On the other
hand, if the continuation is 7 — —it, the anti-time ordered product results. With this in mind, the
noise kernel is seen to be related to the quantum stress tensor fluctuations derived via the effective
action as

16Nabc/d/ == ATaQbC'd/ t:—iT,t’:—iT' + ATaQbC'd/ t:i‘r,t’:iT’ . (68)
The complete form of the functional Ngperar [G] is
Nabc’d’ [G] = Nabc’d’ [G] + gach’d’ [G] + Ge'd' Nclbb [G] + gabgc’d’Z\7 [G] ) (69)
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with

8Naperar [G] = (1= 26)* (Gt Giava + Gira Giarn) + 4% (Giovar Giap + G Gaperar)
=26 (1 —28) (GpGcvaar + Gya Giepar + Giar Giaper + G Giapar)
+26 (1= 28) (G.o Gip R + G G Rap)
—4€% (G.ap Rerar + G.orar Rap) G + 262 Rergr Rap G2, (70)

~ ]_ ’ ’ ’
8Nclzb [G] = 2(1 - 25) {(25 - 2) G;p/b G;p até& (G;b G;p’ap + G;a G;p'bp )}

1 / / /
K {<2£ - 2) G Giabp +§ (G:P’p Giap + G Grapp® ﬂ

—(m2 =+ fR/) [(1— 2§)G;a Gp— 2G§G;ab}
+2¢ Kzg - ;) Gy G +2G¢ G;plp/] Rap — (m® + ER)E Ry G2, (1)

2
8N [G] =2 (2§ — ;) Goprq GP'9 + 42 (G;p,p’ Gl + GG;ppq,q’>
1 ’ ’
+4¢ (25 - 2) (G G + G Gy
1 ,
- (2£ - 2> [(mQ +ER) Gy G + (m? +ER') Gy G;p}
2 [(m? +€R) Gy + (m? +ER') G| G

L (m? 1 €R) (m? + ¢R) G2, (72)

3

5.2.3 Trace of the noise kernel

One of the most interesting and surprising results to come out of the investigations of the quantum
stress tensor undertaken in the 1970s was the discovery of the trace anomaly [61, 84]. When the
trace of the stress tensor T = ¢g*T,; is evaluated for a field configuration that satisties the field
equation (2), the trace is seen to vanish for massless conformally coupled fields. When this analysis
is carried over to the renormalized expectation value of the quantum stress tensor, the trace no
longer vanishes. Wald [284] showed that this was due to the failure of the renormalized Hadamard
function Gren(x,2’) to be symmetric in 2 and z’, implying that it does not necessarily satisfy the
field equation (2) in the variable 2’. (The definition of Gyen(, ') in the context of point separation
will come next.)

With this in mind, we can now determine the noise associated with the trace. Taking the trace
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at both points « and y of the noise kernel functional (67) yields
NIG] = 9" ¢°* Nopra' G
1 / 1
= —3G€ [<m2 + 2€R> G;p/p —|— <m2 + 2€R/> G;ppil
2 , / 1 1
+5 (0 6+ GG )+ (4 gem) (m 4 o) &
1 1 p'p pp’ pp’
+3 6 —£ 3 6 —£ G;p’p G; -3¢ (G;p G;p’ + G;p’ G;p )
1 / 1 .
+ <m2 + 2§R> G GP + <m2 + 2§R’> Gy G”’} : (73)

For the massless conformal case, this reduces to

1

NG = 15

{RR'G* - 6G (RO + R'0) G + 18[(0G) (O'G) + O'OG]}, (74)
which holds for any function G(x,y). For G being the Green function, it satisfies the field equa-
tion (2):

OG = (m* + £R)G. (75)

We will only assume that the Green function satisfies the field equation in its first variable. Using
the fact 'R = 0 (because the covariant derivatives act at a different point than at which R is
supported), it follows that

O'0G = (m? + ER)D'G. (76)

With these results, the noise kernel trace becomes

N[G] = % {m2 (1-3¢) +3R (é - g) g} [G2 (2m2 + R'€) + (1 —66) Gy GF — 6G§G;p/p']

+% (Eli — f) [3 (2m2 + R f) G,G? —18£G, G;p/pp, +18 <Eli — f) Gpp G;p/p] , (77
which vanishes for the massless conformal case. We have thus shown, based solely on the definition
of the point separated noise kernel, that there is no noise associated with the trace anomaly. This
result obtained in [245] is completely general since it is assumed that the Green function is only
satisfying the field equations in its first variable; an alternative proof of this result was given
in [208]. This condition holds not just for the classical field case, but also for the regularized
quantum case, where one does not expect the Green function to satisfy the field equation in both
variables. One can see this result from the simple observation used in Section 3: Since the trace
anomaly is known to be locally determined and quantum state independent, whereas the noise
present in the quantum field is non-local, it is hard to find a noise associated with it. This general
result is in agreement with previous findings [13, , 58], derived from the Feynman-Vernon
influence functional formalism [39, 88] for some particular cases.
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6 Metric Fluctuations in Minkowski Spacetime

Although the Minkowski vacuum is an eigenstate of the total four-momentum operator of a field in
Minkowski spacetime, it is not an eigenstate of the stress-energy operator. Hence, even for those
solutions of semiclassical gravity such as the Minkowski metric, for which the expectation value of
the stress-energy operator can always be chosen to be zero, the fluctuations of this operator are
non-vanishing. This fact leads to consider the stochastic metric perturbations induced by these
fluctuations.

Here we derive the Einstein-Langevin equation for the metric perturbations in a Minkowski
background. We solve this equation for the linearized Einstein tensor and compute the associ-
ated two-point correlation functions, as well as, the two-point correlation functions for the metric
perturbations. Even though, in this case, we expect to have negligibly small values for these cor-
relation functions for points separated by lengths larger than the Planck length, there are several
reasons why it is worth carrying out this calculation.

On the one hand, these are the first backreaction solutions of the full Einstein—Langevin equa-
tion. There are analogous solutions to a “reduced” version of this equation inspired in a “mini-
superspace” model [59, 38], and there is also a previous attempt to obtain a solution to the
Einstein-Langevin equation in [58], but there the non-local terms in the Einstein-Langevin equa-
tion were neglected.

On the other hand, the results of this calculation, which confirm our expectations that gravi-
tational fluctuations are negligible at length scales larger than the Planck length, but also predict
that the fluctuations are strongly suppressed on small scales, can be considered a first test of
stochastic semiclassical gravity. In addition, these results reveal an important connection between
stochastic gravity and the large N expansion of quantum gravity. We can also extract conclusions
on the possible qualitative behavior of the solutions to the Einstein—Langevin equation. Thus, it
is interesting to note that the correlation functions at short scales are characterized by correla-
tion lengths of the order of the Planck length; furthermore, such correlation lengths enter in a
non-analytic way in the correlation functions.

We advise the reader that his section is rather technical since it deals with an explicit non-trivial
backreaction computation in stochastic gravity. We have tried to make it reasonable self-contained
and detailed, however a more detailed exposition can be found in [209].

6.1 Perturbations around Minkowski spacetime

The Minkowski metric 745, in a manifold M which is topologically IR*, and the usual Minkowski
vacuum, denoted as |0), are the class of simplest solutions to the semiclassical Einstein equa-
tion (7), the so-called trivial solutions of semiclassical gravity [91]. They constitute the ground
state of semiclassical gravity. In fact, we can always choose a renormalization scheme in which the
renormalized expectation value (0] 7% [7]|0) = 0. Thus, Minkowski spacetime (R*,745) and the
vacuum state |0) are a solution to the semiclassical Einstein equation with renormalized cosmolog-
ical constant A = 0. The fact that the vacuum expectation value of the renormalized stress-energy
operator in Minkowski spacetime should vanish was originally proposed by Wald [283], and it may
be understood as a renormalization convention [100, ]. Note that other possible solutions of
semiclassical gravity with zero vacuum expectation value of the stress-energy tensor are the exact
gravitational plane waves, since they are known to be vacuum solutions of Einstein equations which
induce neither particle creation nor vacuum polarization [107, 73, ].

As we have already mentioned the vacuum |0) is an eigenstate of the total four-momentum
operator in Minkowski spacetime, but not an eigenstate of Tﬁ [7]. Hence, even in the Minkowski
background, there are quantum fluctuations in the stress-energy tensor and, as a result, the noise
kernel does not vanish. This fact leads to consider the stochastic corrections to this class of trivial
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solutions of semiclassical gravity. Since, in this case, the Wightman and Feynman functions (37),
their values in the two-point coincidence limit, and the products of derivatives of two of such
functions appearing in expressions (38) and (39) are known in dimensional regularization, we can
compute the Einstein—Langevin equation using the methods outlined in Sections 3 and 4.

To perform explicit calculations it is convenient to work in a global inertial coordinate system
{z"} and in the associated basis, in which the components of the flat metric are simply 7,, =
diag (—1,1,...,1). In Minkowski spacetime, the components of the classical stress-energy tensor (3)
reduce to

T, 6] = 000" 6 — S 90,6 — Lt mPS + € (D~ 04Y) 7, (78)

where [0 = 9,0, and the formal expression for the components of the corresponding “operator”
in dimensional regularization, see Equation (4), is

1 l) = 5 {0000, 9"0} + D8, (79)

where D" is the differential operator (5), with g,, = 7., Ry =0, and V,, = 9,,. The field én(x)
is the field operator in the Heisenberg representation in an n-dimensional Minkowski spacetime,
which satisfies the Klein—-Gordon equation (2). We use here a stress-energy tensor which differs
from the canonical one, which corresponds to £ = 0; both tensors, however, define the same total
momentuim.

The Wightman and Feynman functions (37) for g, = 1, are well known:

GI(J?,y) = ZAI(QZ - y)v CTYF‘n (1‘,y) = AFn (‘T - y)’ (80)

with

= —927mi d"k eikw 2 m2 0
At(z) = -2 /(277)” 5k + m?) 6(k),

d"k eikm
A = f +
F,(2) / @) B2+ m? — e ore— 07,

(81)

where k? = n,,k"k" and kz = n,,k"z”. Note that the derivatives of these functions satisfy
AN (x —y) = 0, A% (x —y) and IYAL (x —y) = —0,A (x — y), and similarly for the Feynman
propagator Ap (z —y).

To write down the semiclassical Einstein equation (7) in n dimensions for this case, we need
to compute the vacuum expectation value of the stress-energy operator components (79). Since,
from (80), we have that (0|¢2(x)|0) = iAp, (0) = iA;(0), which is a constant (independent of ),
we have simply

) [ dk kR v (m2\"* _/ n
v = — = _— —_
<O‘T" M‘O> Z/(27r)n 2 +m?—ie 2 <4W) F( 2)’ (82)

where the integrals in dimensional regularization have been computed in the standard way [209],
and where I'(2) is Euler’s gamma function. The semiclassical Einstein equation (7) in n dimensions
before renormalization reduces now to

8::2}3 = pm () <0 ‘T}’:” [77]] 0> . (83)

This equation, thus, simply sets the value of the bare coupling constant Ap/Gp. Note, from
Equation (82), that in order to have (0| T%" |0)[n] = 0, the renormalized and regularized stress-
energy tensor “operator” for a scalar field in Minkowski spacetime, see Equation (6), has to be
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defined as

n—4
v 4 2 ]
v (ned) _77“ m m r n 4
Tl =0T - T s () T (). (54)

which corresponds to a renormalization of the cosmological constant

E A 2 m4

== 2 +0n—4), 85
Gg G 7rn(nf2)ﬁ+ (n—4) (85)
where
1 e”*mzn% 1 1 eYm?
L= emoy T - S () o -9, 86
" n4(47ru2> n4+2n<4ﬂu2)+ (n—4) (86)

with 7 being Euler’s constant. In the case of a massless scalar field, m? = 0, one simply has
Ap/Gp = A/G. Introducing this renormalized coupling constant into Equation (83), we can take
the limit n — 4. We find that, for (IR*, 74, |0)) to satisfy the semiclassical Einstein equation, we
must take A = 0.

We can now write down the Einstein-Langevin equations for the components h,,, of the stochas-
tic metric perturbation in dimensional regularization. In our case, using (0|¢2 (x)|0) = iAx, (0)
and the explicit expression of Equation (34), we obtain

1
87TGB

4
(z) — 3 ag DM (z) — 2 B (1)

GOM 4 Ag <h’“’ _ ;n’“’h)

. 1 mn —(n— rva v
—6GO ()~ ViA R, (0) + 5 / dy =" HE @, y)hap(y) = €4 (x). (87)

The indices in hy,, are raised with the Minkowski metric, and h = hf; here a superindex M denotes
the components of a tensor linearized around the flat metric. Note that in n dimensions the
two-point correlation functions for the field £#¥ is written as

(€ (@6 (), = p 2 TINE (). (88)
Explicit expressions for D®W#Y and BMHY are given by

1
DO (z) = S P has(z),  BUM(x) = 271 F hap(x), (89)

with the differential operators F* = n*[J, — O*9Y and FHveb = 3Ll v _ Fhv Fob,

6.2 The kernels in the Minkowski background

Since the two kernels (36) are free of ultraviolet divergences in the limit n — 4, we can deal directly
with the Fr*e8(x — y) = lim,, 4 p~2"~% F#o8 in Equation (35). The kernels N#8(z, ) =
Re F*eB (g — 3) and Hﬁmﬁ(x, y) = Im F*°8(z — ) are actually the components of the “phys-
ical” noise and dissipation kernels that will appear in the Einstein—Langevin equations once the
renormalization procedure has been carried out. The bi-tensor F#**? can be expressed in terms
of the Wightman function in four spacetime dimensions, according to Equation (38). The different
terms in this kernel can be easily computed using the integrals

1) = [ 5 60+ m?) oK) 51k = )7+ ] 0060 — ), (90)
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and [H1-#r(p), which are defined as the previous one by inserting the momenta k*t ... kHr with
r =1,...,4 in the integrand. All these integrals can be expressed in terms of I(p); see [209] for
the explicit expressions. It is convenient to separate I(p) into its even and odd parts with respect
to the variables p* as

I(p) = Is(p) + Ia(p), (91)
where Is(—p) = Is(p) and Io(—p) = —Ia(p). These two functions are explicitly given by

IS(p) 8(2 ) p _4m “ 27
(92)
Ix(p) = 8(;) signp” 0(—p® —4m®) | [1+ :

After some manipulations, we find

Frvel () = f £ / (;iz)) o (1 o pz)zl(p)

v (6% d4 _Z T 2 ?
lf;f 520 [ e (sag+ ) 10 (99)

where A =€ — %. The real and imaginary parts of the last expression, which yield the noise and
dissipation kernels, are easily recognized as the terms containing Is(p) and Ix(p), respectively. To
write them explicitly, it is useful to introduce the new kernels

Na(z;m?) = 1 d'p ePT O(—p? — 4m?) 1+ 4m—2 1+ 4m—2 2
ALH T 480w ) (2m)4 b p? p2 )

1 d*p . m? m?\ >
Np(z;m? Af) = 7on | @ni© PEO(—p? — Am?) (|1 + 4p—2 <3A§ + p2> ;

(94)
. 4 9 2\ 2
c2) — b P e 0 2 2 m m
Da(z;m >:4807r/(277)46p signp” 0(—p* — 4m )1/1+4p—2 <1+4p2> ,
4 2 2\ 2
2 —1 P ipe 0 2 2 m m
Dg(z;m Af)—ﬁ o 7r)46” signp” 0(—p” — 4m )”1—1—410—2 <3A§—|— p2> ,
and we finally get
1
NP (g, y) = CFLP N — yym?) + FL FR N (e — y;m?, Ag),
(95)

ro 1 v LV
HY P (2,y) = 57 *PDA(x —y;m?) + FEFIP D (x — y;m?, AE).

Notice that the noise and dissipation kernels defined in Equation (94) are actually real because,
for the noise kernels, only the cospz terms of the exponentials e?® contribute to the integrals,
and, for the dissipation kernels, the only contribution of such exponentials comes from the i sin px
terms.

The evaluation of the kernel Hé‘:aﬁ (z,y) is a more involved task. Since this kernel contains
divergences in the limit n — 4, we use dimensional regularization. Using Equation (39), this kernel
can be written in terms of the Feynman propagator (81) as

po I HE (2,y) = Tm K0 (2 — ), (%6)
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where
KmoB(g) = —p~ (=) {28“8(“Apn (z) 8P0" Ap, (x) + 2D" (0° A, (v)0° Ar, (2))
+2D% (0" Ap, () 0" A, (2)) + 2D*'D*F (A%, (7))
+ {n’“’a(‘IAFn (2)07 + PO AR, (2)0”) + Ag, (0) (0" D*P + n*DH)
e (A, (20— m* A, 0)]57(0) o7)
Let us define the integrals

d"k 1
= [ o .

and JH1Fr(p) obtained by inserting the momenta k! ... k" into the previous integral, together

with
d"k 1
Iy = —(n—4)/
on =1 @m)r (& + m? —ic)’ (%9)

and Ij Nl which are also obtained by inserting momenta in the integrand. Then, the different
terms in Equation (97) can be computed; these integrals are explicitly given in [209]. It is found
that I) =0, and the remaining integrals can be written in terms of Iy, and .J,(p). It is useful to
introduce the projector P** orthogonal to p* and the tensor P*** as

p>PH = ntvp? — phpY, prvel = gpilaphv _ purv pal (100)

Then the action of the operator F1* is simply written as FX* [ d"pe®® f(p) = — [ d"pe™® f(p) p P,
where f(p) is an arbitrary function of p*.

Finally after a rather long but straightforward calculation, and after expanding around n = 4,
we get,

7

waB(ay —
K (@) (4m)?

2
+§(n—2)

(70?05 — ey 0, + 00y

DA — 9D — P DY) 5" (a)
4m?*

+m (2o — gy 5”(37)]

+L]:uuaﬁ/ "D ipa (14 4™ 2¢_>(p2)
180 (2m)m p?

2 T oo} dnp ipxT m2 ? T (02

4
nZe%e] = _ ny o3
{675}— + 270 (60& — 11) FAv F2 } 0" (x)
_ praf pv o A, 4 101
m {135}" + 7.7-; Fy ] (x)}—l—(’)(n ), (101)
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where #,, has been defined in Equation (86), and ¢(p?) and A,,(z) are given by

1
o(p*) = /0 da In (1 + T]:L—;;a(l —a) — ie> = —imh(—p? — 4m2)’ /14 41;;2 +o(p?), (102)

An(z) = / A ipe 1 (103)

where

2
p
1+WO£(1—O[)

1
o(p?) E/ da In
0

The imaginary part of Equation (101) gives the kernel components /f("_‘l)Hg:“B (z,y), according

to Equation (96). It can be easily obtained multiplying this expression by —i and retaining only
the real part (p?) of the function ¢(p?).

6.3 The Einstein—Langevin equation

With the previous results for the kernels we can now write the n-dimensional Einstein—Langevin
equation (87), previous to the renormalization. Taking also into account Equations (82) and (83),
we may finally write:

1 4
= (YW)pv _ (1) v _ (Hpv
87Cn G () 3 apDWH (z) — 28 B (x)
K m2 1
| 4A (Hpv DMV A2 RV
+(47r)2{ g(n_z)G + 55 ¢ ](x)

1 16 1 ,
+ 55802 {—15 DWHY () 4 (6 - 10A§) B ()

n d"p ip(z—y) 2
+/d y/(%)ne o(p7)

2\2 2\2
(1 + 4752) DO (y) 410 <3A§ + 7;) B<1>W(y)1

2
I @y date - ) 8DV 4 5B <y>}
]' ro v
+5 / d"y = Y HE (2,y) hap(y) + O(n — 4) = €47 (). (104)

Notice that the terms containing the bare cosmological constant have cancelled. These equations
can now be renormalized, that is, we can now write the bare coupling constants as renormalized
coupling constants plus some suitably chosen counterterms, and take the limit n — 4. In order
to carry out such a procedure, it is convenient to distinguish between massive and massless scalar
fields. The details of the calculation can be found in [209].
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It is convenient to introduce the two new kernels

1 dp .
. 2\ i1px
Hp(z;m?) = 18072 /7(277)4 e’

m?\* [ 0 2 2 m? 2 8 m?
X {<1+4p2> [—m&gnp 0(—p* — 4m*) 1+4p—2+50(p) T3

1 dp .
a2 — ipT
Hg(z;m*, Af) = 3 / oy e

2\ 2 2 1 m2
X {<3A§ + T;) l—iﬂ' sign p?0(—p? — 4m?) (/1 + 4% + gO(pQ)] - m}’

where ¢(p?) is given by the restriction to n = 4 of expression (102). The renormalized coupling
constants 1/G, a, and 3 are easily computed as it was done in Equation (85). Substituting their
expressions into Equation (104), we can take the limit n — 4, using the fact that, for n = 4,
DO (g) = %A““‘”(x), we obtain the corresponding semiclassical Einstein—Langevin equation.

For the massless case one needs the limit m — 0 of Equation (104). In this case it is convenient
to separate k,, in Equation (86) as k, = &, + 3 In(m?/p?) + O(n — 4), where

1 (N2 1 1 (e
Ro= LR - S () +om—a), 106
" n4(47r> n—4 2 n(47r>+ (n—4) (106)
and use that, from Equation (102), we have

m2 »?
lim p? +ln]——2—|—ln
[‘p( ) I 2

m2—0

. (107)

The coupling constants are then easily renormalized. We note that in the massless limit, the
Newtonian gravitational constant is not renormalized and, in the conformal coupling case, A& = 0,
we have that Og = 8. Note also that, by making m = 0 in Equation (94), the noise and dissipation
kernels can be written as

Na(zim? =0) = N(z),  Np(z;m? = 0,A€) = 0AEN(z),

(108)
Da(z;m? = 0) = D(z), Dg(x;m? = 0, A¢) = 60A&*D(x),
where
_ 1 d*p ipx 2 _ i d*p ipT 0 2

It is also convenient to introduce the new kernel

2
2

1 d'p p
H (e 2y — ipz ]
(:.10°) 48072 / (2m)* ¢ [n 7

1 d4n —(p° + i€)2 + pip,
lim/ P ive 1n< (p” +ic) +pp). (110)

T 48072 e—o+ | (2m)4 12

— i sign p” 9(—p2)}

This kernel is real and can be written as the sum of an even part and an odd part in the variables
a#, where the odd part is the dissipation kernel D(z). The Fourier transforms (109) and (110) can
actually be computed and, thus, in this case we have explicit expressions for the kernels in position
space; see, for instance, [179, 50, ].
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Finally, the Einstein-Langevin equation for the physical stochastic perturbations h,, can be
written in both cases, for m # 0 and for m = 0, as

1 1) pv — 1) pv 2 1) puv
871-GG( )Y (x) 72(&4( Nz (17)+5B( Y (gj))

% / d*y[Ha(x —y) A" (y) + Hy(x — y) BO™ (y)] = £ (x), (111)

where in terms of the renormalized constants o and 3 the new constants are & = o + (360072) 1

and 3 = — (§5 — 5AE)(288072) L. The kernels Ha(z) and Hg(x) are given by Equations (105)
when m # 0, and Ha(z) = H(z;p?), Hg(z) = 60AE?H (z; 4?) when m = 0. In the massless
case, we can use the arbitrariness of the mass scale y to eliminate one of the parameters & or f3.
The components of the Gaussian stochastic source £#¥ have zero mean value, and their two-point
correlation functions are given by (¢#¥(x)£%%(y))s = N**#(z,y), where the noise kernel is given
in Equation (95), which in the massless case reduces to Equation (108).

It is interesting to consider the massless conformally coupled scalar field, i.e., the case A =
0, which is of particular interest because of its similarities with the electromagnetic field, and
also because of its interest in cosmology: Massive fields become conformally invariant when their
masses are negligible compared to the spacetime curvature. We have already mentioned that
for a conformally coupled field, the stochastic source tensor must be traceless (up to first order
in perturbation theory around semiclassical gravity), in the sense that the stochastic variable
&l = nuw " behaves deterministically as a vanishing scalar field. This can be directly checked by
noticing, from Equations (95) and (108), that, when A{ = 0, one has <£ﬁ(x)§a5(y)>s = 0, since
Fl; =30 and .7:”0‘.7:5 = [OF*#. The Einstein-Langevin equations for this particular case (and
generalized to a spatially flat Robertson-Walker background) were first obtained in [58], where
the coupling constant § was fixed to be zero. See also [169] for a discussion of this result and its
connection to the problem of structure formation in the trace anomaly driven inflation |

].

Note that the expectation value of the renormalized stress-energy tensor for a scalar field can
be obtained by comparing Equation (111) with the Einstein-Langevin equation (14), its explicit
expression is given in [209]. The results agree with the general form found by Horowitz [137,

] using an axiomatic approach, and coincides with that given in [91]. The particular cases
of conformal coupling, A{ = 0, and minimal coupling, A{ = —1/6, are also in agreement with
the results for these cases given in [137, , , 7, ], modulo local terms proportional to
AWEY and BMHY due to different choices of the renormalization scheme. For the case of a massive
minimally coupled scalar field, A = —%, our result is equivalent to that of [270].

) )

6.4 Correlation functions for gravitational perturbations

Here we solve the Einstein-Langevin equations (111) for the components G®™*¥ of the linearized
Einstein tensor. Then we use these solutions to compute the corresponding two-point correlation
functions, which give a measure of the gravitational fluctuations predicted by the stochastic semi-
classical theory of gravity in the present case. Since the linearized Einstein tensor is invariant
under gauge transformations of the metric perturbations, these two-point correlation functions are
also gauge invariant. Once we have computed the two-point correlation functions for the linearized
Einstein tensor, we find the solutions for the metric perturbations and compute the associated
two-point correlation functions. The procedure used to solve the Einstein—Langevin equation is
similar to the one used by Horowitz [137] (see also [91]) to analyze the stability of Minkowski
spacetime in semiclassical gravity.
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We first note that the tensors AM#” and BMHY can be written in terms of GMWHY as
2
A(l)/w — g (}“HVG(I)g _ fgéG(l);w) , B(l)lw — 2]:/“/(;(1>g7 (112)

where we have used that 300 = Fg. Therefore, the Einstein-Langevin equation (111) can be
seen as a linear integro-differential stochastic equation for the components G™M#. In order to
find solutions to Equation (111), it is convenient to Fourier transform. With the convention
f(p) = [ d*ze™ " f(z) for a given field f(z), one finds, from Equation (112),

AR (p) = 2p*GOM (p) — §p2P“”@“’2(p),
BOB (p) = —2p? PP GO (p). (113)
The Fourier transform of the Einstein-Langevin Equation (111) now reads
F™ 05(p) GV (p) = 811G € (p), (114)

where

[e3

F* o5(p) = Fi(p) (05 + F2(p) p° P*ag, (115)
with

1~
Fi(p) =1+ 167G p? {4HA(p) — 2@} ,
16 1 3 (116)
Fa(p) = —57G [4HA(p) + Help) —2a - Gﬁ} :
In the Fourier transformed Einstein—Langevin Equation (114), cnv (p), the Fourier transform of
&MV (z), is a Gaussian stochastic source of zero average, and

(8 )Er ) = (2m)* 34 (p +p') N0 (), (117)

S

where we have introduced the Fourier transform of the noise kernel. The explicit expression for
N#veB(p) is found from Equations (95) and (94) to be

2

- O(—p? — 4m?) m? |1 m?\? m?
Nwebp)y= 22 [1+4— | (1+4— | ()PP +10 (3A¢+— | (p*)> P PP
(p) 50m pEel i U (r”) + £+p2 (r”) ;
(118)

which in the massless case reduces to
~ 1 1

li N/u/ozﬂ —_ 2 (2 2P,uua,8 A 20,2 QPIJ,DPO/,B . 11
iy () = Lo 017 | (2 PR+ 60AC02) (19

6.4.1 Correlation functions for the linearized Einstein tensor

In general, we can write GM* = (GVM) + GV, where G{"" is a solution to Equations (111)
with zero average, or Equation (114) in the Fourier transformed version. The averages (G™MH#¥)4
must be a solution of the linearized semiclassical Einstein equations obtained by averaging Equa-
tions (111) or (114). Solutions to these equations (specially in the massless case, m = 0) have
been studied by several authors [137, , , , , , , , , , 91], particularly
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in connection with the problem of the stability of the ground state of semiclassical gravity. The
two-point correlation functions for the linearized Einstein tensor are defined by

guuaﬂ(xw/) = <G“”‘”(x) G(1>aﬂ(x/)>s _ <G(1)#l’($)>s <G“’°‘ﬂ(m’)>
= (G{"(@) G ) (120)

s

S

Now we shall seek the family of solutions to the Einstein—Langevin equation which can be
written as a linear functional of the stochastic source, and whose Fourier transform G®*(p)
depends locally on éaﬂ (p). Each of such solutions is a Gaussian stochastic field and, thus, it can be
completely characterized by the averages (GW#")s and the two-point correlation functions (120).
For such a family of solutions, G{"*"(p) is the most general solution to Equation (114) which is
linear, homogeneous, and local in f"‘ﬁ (p). It can be written as

G (p) = 87G D" o5(p) €7 (p), (121)

where D" ,3(p) are the components of a Lorentz invariant tensor field distribution in Minkowski
spacetime®, symmetric under the interchanges o « 3 and u < v, which is the most general
solution of

P () D s (p) = 61,87, (122)
In addition, we must impose the conservation condition, p,,égl)” Y(p) = 0, where this zero must
be understood as a stochastic variable which behaves deterministically as a zero vector field. We
can write D" ,3(p) = D4 ap(p) + D} ap(p), where DAY o5(p) is a particular solution to Equa-
tion (122) and D} o 5(p) is the most general solution to the homogeneous equation. Consequently,
see Equation (121), we can write G{""" (p) = GV (p) + G{"*” (p). To find the particular solution,
we try an ansatz of the form

DL ap(p) = di(p) 6(,,85) + d2(p) p* P nap. (123)

Substituting this ansatz into Equations (122), it is easy to see that it solves these equations if we
take

Mm=[1L, @@z—th)L, (124)

Fi(p) (p)F5(p)
with )
Fs(p) = Fi(p) + 3p*Fa(p) = 1 — 487G p? {41?3(17) — 2ﬂ] : (125)
and where the notation [ |, means that the zeros of the denominators are regulated with appro-

priate prescriptions in such a way that d;(p) and da(p) are well defined Lorentz invariant scalar
distributions. This yields a particular solution to the Einstein—Langevin equations,

G (p) = 871G D3y o5(p) € (p), (126)

which, since the stochastic source is conserved, satisfies the conservation condition. Note that, in
the case of a massless scalar field (m = 0), the above solution has a functional form analogous
to that of the solutions of linearized semiclassical gravity found in the appendix of [91]. Notice
also that, for a massless conformally coupled field (m = 0 and A = 0), the second term on the
right-hand side of Equation (123) will not contribute in the correlation functions (120), since in
this case the stochastic source is traceless.

3By “Lorentz invariant” we mean invariant under the transformations of the orthochronous Lorentz subgroup;
see [137] for more details on the definition and properties of these tensor distributions.
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A detailed analysis given in [209] concludes that the homogeneous solution G{"**(p) gives no
contribution to the correlation functions (120). Consequently G#%8(z, 2) = (GSW’(m)GS)aﬁ (@'))ss
where G{'(x) is the inverse Fourier transform of Equation (126), and the correlation func-
tions (120) are

(G () G () = 64(2m)° G254 (p + ) Dy oo (p) Do (-p) NP4 (). (127)
It is easy to see from the above analysis that the prescriptions [ ], in the factors D), are irrelevant
in the last expression and, thus, they can be suppressed. Taking into account that Fi(—p) = F;*(p),
with [ = 1,2,3, we get from Equations (123) and (124)

. F .
R () — 20 2 pu os )

(L) py (1) / = 6 254(p+p,)
(G o) Gr () = ea(em) G =P Fy(p)

s 1Fi(p)[?
2

FQ*(P) 2 paf N |1Fa(p)|” 5 2 N
- p? PPN () + 2 prvp2 peB NP o (p)|. (128
ng(p) P( ) |F3(p)|2 P ( ) ( )

This last expression is well defined as a bi-distribution and can be easily evaluated using Equa-
tion (118). The final explicit result for the Fourier transformed correlation function for the Einstein
tensor is thus

~ ~ 2 Sp+p) m?2
(Vpv vaf (. _ 5 2 2 2
(G way=2en), = omr 6 TEG 0 ) 14T

1 m2 2 2\2 3
- (14+4— prre
X 4( + p2> (p”)

Fy(p)|”
saf] o

To obtain the correlation functions in coordinate space, Equation (120), we take the inverse
Fourier transform. The final result is

2\ 2

8
g#uaﬁ(m7$/) — % G? fg}cwaﬂ gA(IE _ 17/) + ?ﬂ- G2 ]:zgufgﬁ gB(.T _ JL‘/), (130)

2 2\ 2 1
Ta(p) = 0(—p? — 4 2,/1+4m(1+4m) L
gA(p) ( p m) p2 p2 |F1(p)|2

5 — (2 2 miz A ”12>21 _ 2F2(p)
Ge(p) = 0(—p? — 4m?) 1+4p2 (3 £+ 7 ) TmoP P E ()

where Fi(p), I = 1,2,3, are given in Equations (116) and (125). Notice that, for a massless field
(m = 0), we have

with

(131)

)

Fi(p) = 1+ 4nGp”H (p; i),
Fy(p) = —1?76 e [(1 + 180A€2)iﬁ(p; %) = GT] ; (132)

Fy(p) = 1 - 487Gp® [15AE2H (p; i) — 27| |

with i = p exp(192072a) and Y = 3 — 60A&2a, and where H(p; ;i) is the Fourier transform of
H(x; 4?) given in Equation (110).
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6.4.2 Correlation functions for the metric perturbations

Starting from the solutions found for the linearized Einstein tensor, which are characterized by the
two-point correlation functions (130) (or, in terms of Fourier transforms, Equation (129)), we can
now solve the equations for the metric perturbations. Working in the harmonic gauge, 9,h** = 0
(this zero must be understood in a statistical sense) where B;w =hu — %nlwhg, the equations for
the metric perturbations in terms of the Einstein tensor are

O (z) = —2G M (z), (133)

or, in terms of Fourier transforms, p? f:#“’(p) = 2@“”‘_” (p). Similarly to the analysis of the equation
for the Einstein tensor, we can write h*” = (h*")s+ ht"”, where hf" is a solution to these equations
with zero average, and the two-point correlation functions are defined by

HB (') = <7L””(m)ﬁaﬁ(x')>s — <7L””(3:)>s <7Laﬂ(x')>s
= (W @)hg? (o)) (134)

S
We can now seek solutions of the Fourier transform of Equation (133) of the form A" (p) =
2D(p)G"* (p), where D(p) is a Lorentz invariant scalar distribution in Minkowski spacetime,
which is the most general solution of p?D(p) = 1. Note that, since the linearized Einstein tensor
is conserved, solutions of this form automatically satisfy the harmonic gauge condition. As in the
previous subsection, we can write D(p) = [1/p?]. + Dy(p), where Dy, (p) is the most general solution

to the associated homogeneous equation and, correspondingly, we have h{"(p) = bt (p) + fLﬁy(p)
However, since Dy, (p) has support on the set of points for which p? = 0, it is easy to see from

Equation (129) (from the factor (—p? — 4m?)) that (ﬁﬁ”(p)él(pl)aﬁ(p’»s = 0 and, thus, the two-
point correlation functions (134) can be computed from (A4 (p)h&® (p')) = (h1” (p)h&B(p'))s. From

Equation (129) and due to the factor (—p? —4m?), it is also easy to see that the prescription [ |,
is irrelevant in this correlation function, and we obtain

(i @i @), = o (G ) G0 (135)
where (C;’g)’“’ (p) é’g)‘xﬁ(p’))s is given by Equation (129). The right-hand side of this equation is
a well defined bi-distribution, at least for m # 0 (the € function provides the suitable cutoff). In
the massless field case, since the noise kernel is obtained as the limit m — 0 of the noise kernel
for a massive field, it seems that the natural prescription to avoid the divergences on the lightcone
p? = 0 is a Hadamard finite part (see [250, ] for its definition). Taking this prescription, we
also get a well defined bi-distribution for the massless limit of the last expression.

The final result for the two-point correlation function for the field A*" is

4 2
leaﬂ(l‘,.’lﬁl) _ £ G2 ]:g;cwaﬂ HA(.Z‘ _ I/) + 377( GQ ‘7_-9;31,1/‘7:;)/5 HB(l‘ _ .I/), (136)

where Ha(p) = [1/(p*)’]Ga(p) and Hp(p) = [1/(p*)?]Gn(p), with Ga(p) and Gp(p) given by
Equation (131). The two-point correlation functions for the metric perturbations can be easily
obtained using h,, = hy, — %nwhg.

6.4.3 Conformally coupled field

For a conformally coupled field, i.e., when m = 0 and A& = 0, the previous correlation functions are
greatly simplified and can be approximated explicitly in terms of analytic functions. The detailed
results are given in [209]; here we outline the main features.
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When m = 0 and AE = 0, we have Gg(z) = 0 and Ga(p) = 6(—p?) |Fi(p)|">. Thus the
two-point correlations functions for the Einstein tensor is

d4p eip(m—m’) 9(_p2)
4 ~
(2m) (1 + 47 Gp*H (p; i)

(137)

2

praf / :l 2 cpvaf
R |

where H(p, ;i%) = (48072) =  In[—((p° + i€) + p'p;) /1?] (see Equation (110)).

To estimate this integral, let us consider spacelike separated points (x — 2')* = (0,x — x’), and
define y = x — x’. We may now formally change the momentum variable p* by the dimensionless
vector s”, p* = s/|y|. Then the previous integral denominator is |1 + 167 (Lp/|y|)2s?H (s)|?,
where we have introduced the Planck length Lp = v/G. It is clear that we can consider two
regimes: (a) when Lp < |y|, and (b) when |y| ~ Lp. In case (a) the correlation function, for the
0000 component, say, will be of the order

L4
GO000(y) ~ =P
T
In case (b) when the denominator has zeros, a detailed calculation carried out in [209] shows that
Lp 1
gOOOO(y) ~ e~ IYI/Le ( 4+ -+ ) ,
ME Lelyl?

which indicates an exponential decay at distances around the Planck scale. Thus short scale
fluctuations are strongly suppressed.
For the two-point metric correlation the results are similar. In this case we have

d4p eip(zfz')9(7p2)
4 ~
Cr (422 |1 + 4 G2 (1 2)

4
HH P (2,2 = % G? Frvel / 2 (138)

The integrand has the same behavior of the correlation function of Equation (137), thus matter
fields tends to suppress the short scale metric perturbations. In this case we find, as for the
correlation of the Einstein tensor, that for case (a) above we have

L4

HO000(y) v B

lyl*

and for case (b) we have

HO00 () s e~ I¥I/ L (|LP +. ) .
y

It is interesting to write expression (138) in an alternative way. If we use the dimensionless
tensor P*v*# introduced in Equation (100), which accounts for the effect of the operator F1Vo8

we can write .y S 5 )
4 d ip(z—a’) puraf g(_
Hvo (g, a') = %cﬂ/ 2 K Thr) (139)
(27) (1 + 47 Gp2H (p; ji?)

This expression allows a direct comparison with the graviton propagator for linearized quantum
gravity in the 1/N expansion found by Tomboulis [277]. One can see that the imaginary part of
the graviton propagator leads, in fact, to Equation (139). In [255] it is shown that the two-point
correlation functions for the metric perturbations derived from the Einstein—Langevin equation are
equivalent to the symmetrized quantum two-point correlation functions for the metric fluctuations
in the large N expansion of quantum gravity interacting with N matter fields.
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6.5 Discussion

The main results of this section are the correlation functions (130) and (136). In the case of
a conformal field, the correlation functions of the linearized Einstein tensor have been explicitly
estimated. From the exponential factors e~ !¥//ZP in these results for scales near the Planck length,
we see that the correlation functions of the linearized Einstein tensor have the Planck length as
the correlation length. A similar behavior is found for the correlation functions of the metric
perturbations. Since these fluctuations are induced by the matter fluctuations, we infer that the
effect of the matter fields is to suppress the fluctuations of the metric at very small scales. On
the other hand, at scales much larger than the Planck length, the induced metric fluctuations are
small compared with the free graviton propagator which goes like L2 /|y|?, since the action for the
free graviton goes like S}, ~ f d*x LEQhDh.

For background solutions of semiclassical gravity with other scales present apart from the
Planck scales (for instance, for matter fields in a thermal state), stress-energy fluctuations may be
important at larger scales. For such backgrounds, stochastic semiclassical gravity might predict
correlation functions with characteristic correlation lengths larger than the Planck scales. It seems
quite plausible, nevertheless, that these correlation functions would remain non-analytic in their
characteristic correlation lengths. This would imply that these correlation functions could not be
obtained from a calculation involving a perturbative expansion in the characteristic correlation
lengths. In particular, if these correlation lengths are proportional to the Planck constant &, the
gravitational correlation functions could not be obtained from an expansion in A. Hence, stochastic
semiclassical gravity might predict a behavior for gravitational correlation functions different from
that of the analogous functions in perturbative quantum gravity [79, 78, 77, 80]. This is not
necessarily inconsistent with having neglected action terms of higher order in A when considering
semiclassical gravity as an effective theory [91]. It is, in fact, consistent with the closed connection
of stochastic gravity with the large N expansion of quantum gravity interacting with N matter
fields.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-3


http://www.livingreviews.org/lrr-2004-3

48 Bei Lok Hu and Enric Verdaguer

7 Structure Formation

Cosmological structure formation is a key problem in modern cosmology [190, | and inflation
offers a natural solution to this problem. If an inflationary period is present, the initial seeds for
the generation of the primordial inhomogeneities that lead to the large scale structure have their
source in the quantum fluctuations of the inflaton field, the field which is generally responsible for
driving inflation. Stochastic gravity provides a sound and natural formalism for the derivation of
the cosmological perturbations generated during inflation.

In [254] it was shown that the correlation functions that follow from the Einstein—Langevin
equation which emerges in the framework of stochastic gravity coincide with that obtained with
the usual quantization procedures [218], when both the metric perturbations and the inflaton fluc-
tuations are both linearized. Stochastic gravity, however, can naturally deal with the fluctuations
of the inflaton field even beyond the linear approximation.

Here we will illustrate the equivalence with the usual formalism, based on the quantization of
the linear cosmological and inflaton perturbations, with one of the simplest chaotic inflationary
models in which the background spacetime is a quasi-de Sitter universe [253, ].

7.1 The model

In this chaotic inflationary model [199] the inflaton field ¢ of mass m is described by the following
Lagrangian density:
1 1
L() = 59""VadVi6 + 5m?¢”. (140)

The conditions for the existence of an inflationary period, which is characterized by an accelerated
cosmological expansion, is that the value of the field over a region with the typical size of the Hubble
radius is higher than the Planck mass mp. This is because in order to solve the cosmological horizon
and flatness problem more than 60 e-folds of expansion are needed; to achieve this the scalar field
should begin with a value higher than 3mp. The inflaton mass is small: As we will see, the large
scale anisotropies measured in the cosmic background radiation [265] restrict the inflaton mass to
be of the order of 107%mp. We will not discuss the naturalness of this inflationary model and we
will simply assume that if one such region is found (inside a much larger universe) it will inflate
to become our observable universe.

We want to study the metric perturbations produced by the stress-energy tensor fluctuations of
the inflaton field on the homogeneous background of a flat Friedmann—Robertson—-Walker model,
described by the cosmological scale factor a(n), where 7 is the conformal time, which is driven by

the homogeneous inflaton field ¢(n) = (¢). Thus we write the inflaton field in the following form:

¢ = (1) + ¢(x), (141)

where @(x) corresponds to a free massive quantum scalar field with zero expectation value on the
homogeneous background metric, (@) = 0. We will restrict ourselves to scalar-type metric pertur-
bations, because these are the ones that couple to the inflaton fluctuations in the linear theory.
We note that this is not so if we were to consider inflaton fluctuations beyond the linear approx-
imation; then tensorial and vectorial metric perturbations would also be driven. The perturbed
metric gup = gap + hap can be written in the longitudinal gauge as

ds* = a®(n) [—(1 + 2@(2))dn® + (1 — 2¥(x))d;;dz'dz?] (142)

where the scalar metric perturbations ®(z) and ¥(x) correspond to Bardeen’s gauge invariant
variables [12].
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7.2 The Einstein—Langevin equation for scalar metric perturbations

The Einstein—Langevin equation as described in Section 3 is gauge invariant, and thus we can
work in a desired gauge and then extract the gauge invariant quantities. The Einstein—Langevin
equation (14) reads now

G —87G (TR)) + G (h) — 876 (1)) (h) ) = 87Gea, (143)

where the two first terms cancel, that is Gfl%) —81G <Tég)> = 0, as the background metric satisfies

the semiclassical Einstein equations. Here the superscripts (90 and () refer to functions in the
background metric gq, and linear in the metric perturbation hqp, respectively. The stress tensor
operator Ty for the minimally coupled inflaton field in the perturbed metric is

Ty = VadVod + %gab (@cé@%} T m2q32) . (144)

Using the decomposition of the scalar field into its homogeneous and inhomogeneous part, see
Equation (141), and the metric gqp into its homogeneous background g,p and its perturbation hgp,
the renormalized expectation value for the stress-energy tensor operator can be written as

(Tiial) = (Twlal), + (Twld), +(THE)_; (145)

where the subindices indicate the degree of dependence on the homogeneous field ¢, and its per-
turbation . The first term in this equation depends only on the homogeneous field and it is given
by the classical expression. The second term is proportional to (p[g]) which is not zero because
the field dynamics is considered on the perturbed spacetime, i.e., this term includes the coupling of
the field with Ay, and may be obtained from the expectation value of the linearized Klein—Gordon
equation,

(Og4n —m?) ¢ = 0. (146)

The last term in Equation (145) corresponds to the expectation value to the stress tensor for a
free scalar field on the spacetime of the perturbed metric.

After using the previous decomposition, the noise kernel Nypeq[g; 2, y) defined in Equation (11)
can be written as

({tavlg; 2), tealgi v)}) = ({Talgs @), Tealgs ) }) (g2 + ({Harlgs 2). Tealgi v)}) e (147)

where we have used the fact that (@) = 0 = (¢pp¢) for Gaussian states on the background geometry.
We consider the vacuum state to be the Euclidean vacuum which is preferred in the de Sitter
background, and this state is Gaussian. In the above equation the first term is quadratic in ¢,
whereas the second one is quartic. Both contributions to the noise kernel are separately conserved
since both ¢(n) and ¢ satisfy the Klein—Gordon field equations on the background spacetime.
Consequently, the two terms can be considered separately. On the other hand, if one treats ¢ as a
small perturbation, the second term in Equation (147) is of lower order than the first and may be
consistently neglected; this corresponds to neglecting the last term of Equation (145). The stress
tensor fluctuations due to a term of that kind were considered in [252].

We can now write down the Einstein-Langevin equations (143) to linear order in the inflaton
fluctuations. It is easy to check [254] that the space-space components coming from the stress tensor
expectation value terms and the stochastic tensor are diagonal, i.e., (Tij> =0 =¢; for i # j. This,
in turn, implies that the two functions characterizing the scalar metric perturbations are equal,
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® = U, in agreement with [218]. The equation for ® can be obtained from the 0i-component of
the Einstein—Langevin equation, which in Fourier space reads

2iki(H®y, + 3) = 87G (Eoi)k, (148)

where k; is the comoving momentum component associated to the comoving coordinate z?, and
where we have used the definition ®(n) = [ d*z exp(—ik-Z)®(n, Z). Here primes denote derivatives
with respect to the conformal time 7 and H = a’/a. A nonlocal term of dissipative character
which comes from the second term in Equation (145) should also appear on the left-hand side of
Equation (148), but we have neglected it to simplify the forthcoming expressions. Its inclusion does
not change the large scale spectrum in an essential way [254]. Note, however, that the equivalence
of the stochastic approach to linear order in ¢ and the usual linear cosmological perturbations
approach is independent of that approximation [254]. To solve Equation (148), whose left-hand
side comes from the linearized Einstein tensor for the perturbed metric [218], we need the retarded
propagator for the gravitational potential @y,

/ - 471— / a’(n/) /
Guln) = =iy (80 =) + f(a)). (149
where f is a homogeneous solution of Equation (148) related to the initial conditions chosen,
and m} = 1/G. For instance, if we take f(n,17') = —0(no — n')a(n’)/a(n), the solution would
correspond to “turning on” the stochastic source at 19. With the solution of the Einstein—Langevin
equation (148) for the scalar metric perturbations we are in the position to compute the two-point
correlation functions for these perturbations.

7.3 Correlation functions for scalar metric perturbations

The the two-point correlation function for the scalar metric perturbations induced by the inflaton
fluctuations is thus given by

(@ () (1)), = (27)25(E + F) / i / o G G (1 m2) (or)ie () Eor)ie (), - (150)

Here two-point correlation function for the stochastic source, which is connected to the stress-
energy tensor fluctuations through the noise kernel, is given by

((€oi) k(M) (0i) =k (m2))s = %<{(£0i)k(nl)a (toi)—r(m2) oy

= %kikiqﬁ'(m)qﬁ'(nz)GS)(771,772)7 (151)

where G]({})(T]h?’}g) = {@r(m), p—k(n2)}) is the k-mode Hadamard function for a free minimally
coupled scalar field in the appropriate vacuum state on the Friedmann—Robertson-Walker back-
ground.

In practice, to make the explicit computation of the Hadamard function, we will assume that the
field state is in the Euclidean vacuum and the background spacetime is de Sitter. Furthermore we
will compute the Hadamard function for a massless field, and will make a perturbative expansion
in terms of the dimensionless parameter m/mp. Thus we consider

Gy () = (01w (m), 51 (12)}10) = 2R (s ()1 (12))

with

9k (n) = a(n)¢r(n) = arur(n) + &ik“*—k(n)a
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and where ‘
up = (2k)7V2 1 (1 —i/n)

are the positive frequency k-modes for a massless minimally coupled scalar field on a de Sitter
background, which define the Euclidean vacuum state, a|0) = 0 [25].

The assumption of a massless field for the computation of the Hadamard function is made
because massless modes in de Sitter are much simpler to deal with than massive modes. We can
see that this is, however, a reasonable approximation as follows. For a given mode the m = 0
approximation is reasonable when its wavelength X is shorter that the Compton wavelength, A, =
1/m. In our case we have a very small mass m, and the horizon size H !, where H is the Hubble
constant H = a/a (here a(t) with ¢ the physical time dt = adn), satisfies that H=1 < \.. Thus, for
modes inside the horizon, A < A\; and m = 0 is a reasonable approximation. Outside the horizon
massive modes decay in amplitude as ~ exp(—m?t/H), whereas massless modes remain constant,
thus when modes leave the horizon the approximation will eventually break down. However, we
only need to ensure that the approximation is still valid after 60 e-folds, i.e., Ht ~ 60, but this
is the case since 60 m? < H? given that m ~ 10~%mp, and m < H as in most inflationary
models [190, 229].

The background geometry is not exactly that of de Sitter spacetime, for which a(n) = —(Hn) ™!
with —oo < 1 < 0. One can expand in terms of the “slow-roll” parameters and assume that to
first order ¢(t) ~ m2(m/mp), where t is the physical time. The correlation function for the metric
perturbation (150) can then be easily computed; see [253, 254] for details. The final result, however,
is very weakly dependent on the initial conditions, as one may understand from the fact that the
accelerated expansion of de quasi-de Sitter spacetime during inflation erases the information about
the initial conditions. Thus one may take the initial time to be 179 = —oo, and obtain to lowest
order in m/mp the expression

(@1 (n) Ppr (1'))s ~ 872 (m) k:_3(277)35(E + E/) cosk(n—n'). (152)

mp
From this result two main conclusions are derived. First, the prediction of an almost Harrison—
Zel'dovich scale-invariant spectrum for large scales, i.e., small values of k. Second, since the
correlation function is of order of (m/mp)?, a severe bound to the mass m is imposed by the
gravitational fluctuations derived from the small values of the Cosmic Microwave Background
(CMB) anisotropies detected by COBE. This bound is of the order of (m/mp) ~ 107 [265, 218].
We should now comment on some differences with those works in [415, , , 51] which
used a self-interacting scalar field or a scalar field interacting nonlinearly with other fields. In
those works an important relaxation of the ratio m/mp was found. The long wavelength modes
of the inflaton field were regarded as an open system in an environment made out of the shorter
wavelength modes. Then, Langevin type equations were used to compute the correlations of the
long wavelength modes driven by the fluctuations of the shorter wavelength modes. In order to
get a significant relaxation on the above ratio, however, one had to assume that the correlations
of the free long wavelength modes, which correspond to the dispersion of the system initial state,
had to be very small. Otherwise they dominate by several orders of magnitude those fluctuations
that come from the noise of the environment. This would require a great amount of fine-tuning
for the initial quantum state of each mode [254]. We should remark that in the model discussed
here there is no environment for the inflaton fluctuations. The inflaton fluctuations, however, are
responsible for the noise that induces the metric perturbations.

7.4 Discussion

One important advantage of the Einstein—Langevin approach to the gravitational fluctuations in
inflaton over the approach based on the quantization of the linear perturbations of both the metric
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and the inflaton field [218], is that an exact treatment of the inflaton quantum fluctuations is
possible. This leads to corrections to the almost scale invariant spectrum for scalar metric pertur-
bations at large scales, and has implications for the spectrum of the cosmic microwave background
anisotropies. However, in the standard inflationary models these corrections are subdominant.
Furthermore when the full non linear effect of the quantum field is considered, tensorial metric
perturbations are also induced by the inflaton fluctuations. An estimation of this effect, presumably
subdominant over the free tensorial fluctuations, has not been performed.

We should remark that although the gravitational fluctuations are here assumed to be classi-
cal, the correlation functions obtained correspond to the expectation values of the symmetrized
quantum metric perturbations [19, ]. This means that even in the absence of decoherence the
fluctuations predicted by the Einstein—Langevin equation, whose solutions do not describe the
actual dynamics of the gravitational field any longer, still give the correct symmetrized quantum
two-point functions.

Another important advantage of the stochastic gravity approach is that one may also compute
the gravitational fluctuations in inflationary models which are not driven by an inflaton field,
such as Starobinsky inflation which is driven by the trace anomaly due to conformally coupled
quantum fields. In fact, Einstein’s semiclassical equation (7) for a massless quantum field which
is conformally coupled to the gravitational field admits an inflationary solution which is almost
de Sitter initially and ends up in a matter-dominated-like regime [269, ]. In these models the
standard approach based on the quantization of the gravitational and the matter fields to linear
order cannot be used. This is because the calculation of the metric perturbations correspond to
having only the last term in the noise kernel in Equation (147), since there is no homogeneous field
#(n) as the expectation value (@) = 0, and linearization becomes trivial.

In the trace anomaly induced inflation framework, Hawking et al. [132] were able to com-
pute the two-point quantum correlation function for scalar and tensorial metric perturbations
in a spatially closed de Sitter universe, making use of the anti-de Sitter conformal field theory
correspondence. They find that short scale metric perturbations are strongly suppressed by the
conformal matter fields. This is similar to what we obtained in Section 6 for the induced met-
ric fluctuations in Minkowski spacetime. In the stochastic gravity context, the noise kernel in a
spatially closed de Sitter background was derived in [252]. However, in a spatially flat arbitrary
Friedmann—Robertson—-Walker model the Einstein—Langevin equation describing the metric per-
turbations was first obtained in [58] (see also [169]). The two-point correlation functions for the
metric perturbations can be derived from its solutions, but this is work still in progress.
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8 Black Hole Backreaction

As another illustration of the application of stochastic gravity we consider fluctuations and back-
reaction in black hole spacetimes. The celebrated Hawking effect of particle creation from black
holes is constructed from a quantum field theory in a curved spacetime framework. The oft-
mentioned ‘black hole evaporation’ referring to the reduction of the mass of a black hole due
to particle creation must entail backreaction considerations. Backreaction of Hawking radia-
tion [118, 13, , , , , , 8] could alter the evolution of the background spacetime
and change the nature of its end state, more drastically so for Planck size black holes. Be-
cause of the higher symmetry in cosmological spacetimes, backreaction studies of processes therein
have progressed further than the corresponding black hole problems, which to a large degree is
still concerned with finding the right approximations for the regularized energy-momentum ten-
sor [177, , ,6,7,5, ] for even the simplest spacetimes such as the spherically symmetric
family including the important Schwarzschild metric (for a summary of the cosmological backreac-
tion problem treated in the stochastic gravity theory, see [169]). The latest important work is that
of Hiscock, Larson, and Anderson [134] on backreaction in the interior of a black hole, where one can
find a concise summary of earlier work. To name a few of the important landmarks in this endeavor
(this is adopted from [134]), Howard and Candelas [145, 144] have computed the stress-energy of
a conformally invariant scalar field in the Schwarzschild geometry. Jensen and Ottewill [176] have
computed the vacuum stress-energy of a massless vector field in Schwarzschild spacetime. Approx-
imation methods have been developed by Page, Brown, and Ottewill [231, 28, 29] for conformally
invariant fields in Schwarzschild spacetime, Frolov and Zel’nikov [99] for conformally invariant fields
in a general static spacetime, and Anderson, Hiscock, and Samuel [6, 7] for massless arbitrarily
coupled scalar fields in a general static spherically symmetric spacetime. Furthermore the DeWitt—
Schwinger approximation has been derived by Frolov and Zel'nikov [97, 98] for massive fields in Kerr
spacetime, by Anderson, Hiscock, and Samuel [6, 7] for a general (arbitrary curvature coupling and
mass) scalar field in a general static spherically symmetric spacetime and Anderson, Hiscock, and
Samuel have applied their method to the Reissner—Nordstrom geometry [5]. Though arduous and
demanding, the effort continues on because of the importance of backreaction effects of Hawking
radiation in black holes. They are expected to address some of the most basic issues such as black
hole thermodynamics [174, , , 16,17, 18, , , , , , , , , , , 204]
and the black hole end state and information loss puzzles [230].

Here we wish to address the black hole backreaction problem with new insights provided by
stochastic semiclassical gravity. (For the latest developments see, e.g., the reviews [151, , ,

]). Tt is not our intention to seek better approximations for the regularized energy-momentum
tensor, but to point out new ingredients lacking in the existing framework based on semiclassical
gravity. In particular one needs to consider both the dissipation and the fluctuations aspects in
the backreaction of particle creation or vacuum polarization.

In a short note [164] Hu, Raval, and Sinha discussed the formulation of the problem in this new
light, commented on some shortcomings of existing works, and sketched the strategy [264] behind
the stochastic gravity theory approach to the black hole fluctuations and backreaction problem.
Here we follow their treatment with focus on the class of quasi-static black holes.

From the new perspective provided by statistical field theory and stochastic gravity, it is not
difficult to postulate that the backreaction effect is the manifestation of a fluctuation-dissipation
relation [85, 86, , 34, 288]. This was first conjectured by Candelas and Sciama, [60, ]
for a dynamic Kerr black hole emitting Hawking radiation, and by Mottola [217] for a static black
hole (in a box) in quasi-equilibrium with its radiation via linear response theory [191, 24, , ,

]. However, these proposals as originally formulated do not capture the full spirit and content of
the self-consistent dynamical backreaction problem. Generally speaking (paraphrasing Mottola),
linear response theory is not designed for tackling backreaction problems. More specifically, if one
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assumes a specified background spacetime (static in this case) and state (thermal) of the matter
field(s) as done in [217], one would get a specific self-consistent solution. But in the most general
situation which a full backreaction program demands of, the spacetime and the state of matter
should be determined by their dynamics under mutual influence on an equal footing, and the
solutions checked to be physically sound by some criteria like stability consideration. A recent
work of Anderson, Molina-Paris, and Mottola [9, 10] on linear response theory does not make
these restrictions. They addressed the issue of the validity of semiclassical gravity (SCG) based
on an analysis of the stability of solutions to the semiclassical Einstein equation (SEE). However,
on this issue, Hu, Roura, and Verdaguer [165] pointed out the importance of including both the
intrinsic and induced fluctuations in the stability analysis, the latter being given by the noise
kernel. The fluctuation part represented by the noise kernel is amiss in the fluctuation-dissipation
relation proposed by Candelas and Sciama [60, , | (see below). As will be shown in an
explicit example later, the backreaction is an intrinsically dynamic process. The Einstein—Langevin
equation in stochastic gravity overcomes both of these deficiencies.

For Candelas and Sciama [60, , ], the classical formula they showed relating the dis-
sipation in area linearly to the squared absolute value of the shear amplitude is suggestive of a
fluctuation-dissipation relation. When the gravitational perturbations are quantized (they choose
the quantum state to be the Unruh vacuum) they argue that it approximates a flux of radiation
from the hole at large radii. Thus the dissipation in area due to the Hawking flux of gravitational
radiation is allegedly related to the quantum fluctuations of gravitons. The criticism in [164] is that
their’s is not a fluctuation-dissipation relation in the truly statistical mechanical sense, because it
does not relate dissipation of a certain quantity (in this case, horizon area) to the fluctuations of the
same quantity. To do so would require one to compute the two point function of the area, which,
being a four-point function of the graviton field, is related to a two-point function of the stress
tensor. The stress tensor is the true “generalized force” acting on the spacetime via the equations
of motion, and the dissipation in the metric must eventually be related to the fluctuations of this
generalized force for the relation to qualify as a fluctuation-dissipation relation.

From this reasoning, we see that the stress-energy bi-tensor and its vacuum expectation value
known as the noise kernel are the new ingredients in backreaction considerations. But these
are exactly the centerpieces in stochastic gravity. Therefore the correct framework to address
semiclassical backreaction problems is stochastic gravity theory, where fluctuations and dissipation
are the equally essential components. The noise kernel for quantum fields in Minkowski and de

Sitter spacetime has been carried out by Martin, Roura, and Verdaguer [207, , ], and for
thermal fields in black hole spacetimes and scalar fields in general spacetimes by Campos, Hu, and
Phillips [54, 55, , , 241]. Earlier, for cosmological backreaction problems Hu and Sinha [167]

derived a generalized expression relating dissipation (of anisotropy in Bianchi Type I universes) and
fluctuations (measured by particle numbers created in neighboring histories). This example shows
that one can understand the backreaction of particle creation as a manifestation of a (generalized)
fluctuation-dissipation relation.

As an illustration of the application of stochastic gravity theory we outline the steps in a
black hole backreaction calculation, focusing on the manageable quasi-static class. We adopt the
Hartle-Hawking picture [127] where the black hole is bathed eternally — actually in quasi-thermal
equilibrium — in the Hawking radiance it emits. It is described here by a massless scalar quantum
field at the Hawking temperature. As is well-known, this quasi-equilibrium condition is possible
only if the black hole is enclosed in a box of size suitably larger than the event horizon. We can
divide our consideration into the far field case and the near horizon case. Campos and Hu [54, 55]
have treated a relativistic thermal plasma in a weak gravitational field. Since the far field limit of
a Schwarzschild metric is just the perturbed Minkowski spacetime, one can perform a perturbation
expansion off hot flat space using the thermal Green functions [108]. Strictly speaking the location
of the box holding the black hole in equilibrium with its thermal radiation is as far as one can
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go, thus the metric may not reach the perturbed Minkowski form. But one can also put the black
hole and its radiation in an anti-de Sitter space [133], which contains such a region. Hot flat
space has been studied before for various purposes (see, e.g., [116, , , 72, 27]). Campos and
Hu derived a stochastic CTP effective action and from it an equation of motion, the Einstein—
Langevin equation, for the dynamical effect of a scalar quantum field on a background spacetime.
To perform calculations leading to the Einstein-Langevin equation, one needs to begin with a self-
consistent solution of the semiclassical Einstein equation for the thermal field and the perturbed
background spacetime. For a black hole background, a semiclassical gravity solution is provided
by York [297, , ]. For a Robertson—Walker background with thermal fields, it is given by
Hu [148]. Recently, Sinha, Raval, and Hu [2641] outlined a strategy for treating the near horizon
case, following the same scheme of Campos and Hu. In both cases two new terms appear which
are absent in semiclassical gravity considerations: a nonlocal dissipation and a (generally colored)
noise kernel. When one takes the noise average, one recovers York’s [297, , ] semiclassical
equations for radially perturbed quasi-static black holes. For the near horizon case one cannot
obtain the full details yet, because the Green function for a scalar field in the Schwarzschild metric

comes only in an approximate form (e.g., Page approximation [231]), which, though reasonably
accurate for the stress tensor, fails poorly for the noise kernel [245, ]. In addition a formula is
derived in [264] expressing the CTP effective action in terms of the Bogolyubov coefficients. Since

it measures not only the number of particles created, but also the difference of particle creation in
alternative histories, this provides a useful avenue to explore the wider set of issues in black hole
physics related to noise and fluctuations.

Since backreaction calculations in semiclassical gravity have been under study for a much
longer time than in stochastic gravity, we will concentrate on explaining how the new stochastic
features arise from the framework of semiclassical gravity, i.e., noise and fluctuations and their
consequences. Technically the goal is to obtain an influence action for this model of a black hole
coupled to a scalar field and to derive an Einstein—Langevin equation from it. As a by-product,
from the fluctuation-dissipation relation, one can derive the vacuum susceptibility function and
the isothermal compressibility function for black holes, two quantities of fundamental interest in
characterizing the nonequilibrium thermodynamic properties of black holes.

8.1 The model

In this model the black hole spacetime is described by a spherically symmetric static metric with
a line element of the following general form written in advanced time Eddington—Finkelstein coor-
dinates,

2m

ds? = g, datda” = —e*? (1 - > dv? +2e*Vdv dr + r?d9?, (153)

r

where ¢ = (r) and m = m(r), v = t + r + 2M In (5% — 1), and dQ? is the line element on the
two-sphere. Hawking radiation is described by a massless, conformally coupled quantum scalar
field ¢ with the classical action

Sulé. gl = =5 [ 559" 0,00,6 + AP (154)

where £(n) = 4(;; 121)) (n is the dimension of spacetime), and R is the curvature scalar of the

spacetime it lives in.

Let us consider linear perturbations h,, off a background Schwarzschild metric gf?),

Guv = g,(f,),) + hul/7 (155)
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with standard line element
2M
(ds*)? = (1 — ) dv? + 2dv dr + r2dQ>. (156)
r

We look for this class of perturbed metrics in the form given by Equation (153) (thus restricting
our consideration only to spherically symmetric perturbations),

eV ~ 14 ep(r), (157)

and
m >~ M[1+ eu(r)], (158)
where ¢/(AM?) = aT}} with a = g—; and A = 90(8*)7?, and where Ty is the Hawking temperature.
This particular parametrization of the perturbation is chosen following York’s notation [297, ,
]. Thus the only non-zero components of h,, are

[ {(1 - 21”) 2ep(r) + 2Menlr)] (159)

r

and
hoyr = Ep(r)' (160)

So this represents a metric with small static and radial perturbations about a Schwarzschild black
hole. The initial quantum state of the scalar field is taken to be the Hartle-Hawking vacuum, which
is essentially a thermal state at the Hawking temperature and it represents a black hole in (unstable)
thermal equilibrium with its own Hawking radiation. In the far field limit, the gravitational field
is described by a linear perturbation of Minkowski spacetime. In equilibrium the thermal bath can
be characterized by a relativistic fluid with a four-velocity (time-like normalized vector field) u*,
and temperature in its own rest frame 5.

To facilitate later comparisons with our program we briefly recall York’s work [297, , ].
(See also the work by Hochberg and Kephart [135] for a massless vector field, by Hochberg, Kephart,
and York [130] for a massless spinor field, and by Anderson, Hiscock, Whitesell, and York [8] for
a quantized massless scalar field with arbitrary coupling to spacetime curvature.) York considered
the semiclassical Einstein equation,

G;Lu(gaﬁ) = H<T,ul/>7 (161)

with G, ~ GfB} + 0G ., where G,(LOU) is the Einstein tensor for the background spacetime. The
zeroth order solution gives a background metric in empty space, i.e, the Schwarzschild metric.
0G,,, is the linear correction to the Einstein tensor in the perturbed metric. The semiclassical
Einstein equation in this approximation therefore reduces to

0G (9, h) = K(T)). (162)

York solved this equation to first order by using the expectation value of the energy-momentum
tensor for a conformally coupled scalar field in the Hartle-Hawking vacuum in the unperturbed
(Schwarzschild) spacetime on the right-hand side and using Equations (159) and (160) to calculate
dG ., on the left-hand side. Unfortunately, no exact analytical expression is available for the (7),,)
in a Schwarzschild metric with the quantum field in the Hartle-Hawking vacuum that goes on the
right-hand side. York therefore uses the approximate expression given by Page [231] which is known
to give excellent agreement with numerical results. Page’s approximate expression for (T),,) was
constructed using a thermal Feynman Green’s function obtained by a conformal transformation of
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a WKB approximated Green’s function for an optical Schwarzschild metric. York then solves the
semiclassical Einstein equation (162) self-consistently to obtain the corrections to the background
metric induced by the backreaction encoded in the functions p(r) and p(r). There was no mention
of fluctuations or its effects. As we shall see, in the language of Sec. (4), the semiclassical gravity
procedure which York followed working at the equation of motion level is equivalent to looking at
the noise-averaged backreaction effects.

8.2 CTP effective action for the black hole

We first derive the CTP effective action for the model described in Sec. (7.1). Using the metric (156)
(and neglecting the surface terms that appear in an integration by parts) we have the action for
the scalar field written perturbatively as

ml®, ] = /d” V=90 ¢ [Dw +VvO L v® } b, (163)
where the first and second order perturbative operators V1) and V(?) are given by
1 _ -
VO = - ——— {0, (V=gO™) 0, + 19,0, + ¢mRV |,

V—g©
W{ (\ﬁw)a + 9,0, — E(n )<R<2> n ;hR(l))}.

In the above expressions, R(®) is the k-order term in the perturbation hy () of the scalar curvature

(164)
v =_

R, and fLW and lAl,W denote a linear and a quadratic combination of the perturbation, respectively:
- 1

huw = hyw — §hgl(3,),

(165)

hltl/ = h och _ hh'u,]j—"_ 8h2 ( ) h ﬁhtxﬁg(o)

From quantum field theory in curved spacetime considerations dlscussed above we take the following
action for the gravitational field:

1
Selow] = o [ V=gORE) + s [de v/

(167G) 5
1~ 360 <£(n) - (13)2

The first term is the classical Einstein—Hilbert action, and the second term is the counterterm in
four dimensions used to renormalize the divergent effective action. In this action /3 = 167G\,
= (288072)~!, and [i is an arbitrary mass scale.

We are interested in computing the CTP effective action (163) for the matter action and when
the field ¢ is initially in the Hartle-Hawking vacuum. This is equivalent to saying that the initial
state of the field is described by a thermal density matrix at a finite temperature T' = Tyy. The CTP
effective action at finite temperature T'= 1/ for this model is given by (for details see [54, 55])

X {3R#mg(x)R“”aﬁ () —

R2(x)} : (166)

Stilhe,] = Sull) — Selhya] - s {2, (]} (167)

where £ denote the forward and backward time path of the CTP formalism, and Gﬁ [hi ] is the
complete 2 x 2 matrix propagator (a and b take + values: G14, G4_, and G__ correspond to

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-3


http://www.livingreviews.org/lrr-2004-3

58 Bei Lok Hu and Enric Verdaguer

the Feynman, Wightman, and Schwinger Green’s functions respectively) with thermal boundary

conditions for the differential operator \/—¢(© (0 + V™ + V@ 4 ). The actual form of G”Sb
cannot be explicitly given. However, it is easy to obtain a perturbatlve expansion in terms of
V) the k-order matrix version of the complete differential operator defined by V. i(lft) = iVi( )

ab
and Vf;) =0, and Gfb, the thermal matrix propagator for a massless scalar field in Schwarzschild
spacetime. To second order Gfb reads
¢ =alh —aivyah -al v e vai vy el vy 6l +. (168)

ac Ved ac Ved ac Ved

Expanding the logarithm and dropping one term independent of the perturbation hfy(x), the CTP
effective action may be perturbatively written as

Sei [hiu] = S [1i2,] = S5 [h,]

nv
+%tr [VP ?,—vhe® 4vPel, —vPaf
—wvielviVel, +vel_viVel —aval viVel . (e9)

In computing the traces, some terms containing divergences are canceled using counterterms in-
troduced in the classical gravitational action after dimensional regularization.

8.3 Near flat case

At this point we divide our considerations into two cases. In the far field limit h,, represent

perturbations about flat space, i.e. gfLO,,) = N The exact “unperturbed” thermal propagators
for scalar fields are known, i.e., the Euclidean propagator with periodicity (5. Using the Fourler
transformed form (those quantltles are denoted with a tilde) of the thermal propagators G (k)

the trace terms of the form tr[Va( )Gﬁm V, Gfs] can be written as [54, 55]

wven, e =

d*k d" ) P -
/ d"wd"z' b, () hhys(a) / ( L cike—) GB (k + q) G2,(q) TP (g, k), (170)

2m)n (2m)n
where the tensor TH"*5(q, k) is defined in [54, 55] after an expansion in terms of a basis of 14
tensors [249, ]. In particular, the last trace of Equation (169) may be split in two different

kernels N#*:2# (g — 2/) and D**8(z — '),
L [vi” G7_ v G‘i@ =— / d*z d*a’ b, (x) by (2) [DP0P (x — &) + iNFoP (@ — )] (171)

One can express the Fourier transforms of these kernels as

() = [ 00+ ) 00=") + 0 = )0 + 7] + a4 + )
$2n5(1a°) ma(18 + ¢°D) 8(a°) 5 [(k +0)?) TP (g ), (172)

D20 = —in? [ L {00 + ) 0a%) ~ 0 = ) 84" + 55 + ) )
—sig (¢°) np(|k? +q°)} 8(¢*)8 [(k + @)°] T *%(q, k), (173)

respectively.
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Using the property TH"@8(q, k) = T8 (—q, —k), it is easy to see that the kernel N#*-@8 (. —z/)
is symmetric and D*"*# (2 —2') is antisymmetric in its arguments; that is, N#**8(z) = N#*28(—g)
and D*"28(g) = —DPoP(—g).

The physical meanings of these kernels can be extracted if we write the renormalized CTP

effective action at finite temperature (169) in an influence functional form [32, , , ]. N,
the imaginary part of the CTP effective action can be identified with the noise kernel and D, the
antisymmetric piece of the real part with the dissipation kernel. Campos and Hu [54, 55] have

shown that these kernels identified as such indeed satisfy a thermal fluctuation-dissipation relation.

If we denote the difference and the sum of the perturbations h/w
C+ of the complex time path of integration C' by [hu] = hf, — h,, and {h.} = hf, +h,,,
respectively, the influence functional form of the thermal CTP effective action may be ertten to

second order in h, as

defined along each branch

Sin 0] = grzgmgey | 470 @) L@ = /) s}

+3 / a2 [y ) (2) TLY,
+% / d*z d*z’ [y ) (2) B8 (2 — 2) {hag} (2')

_% / d'ed'a’ (A () Duy’aﬁ(x — 2" ){hap}(z")

+% / d*x d*a’ [hy,)(x) NP (2 — /) [hag) (2). (174)
The first line is the Einstein-Hilbert action to second order in the perturbation h, (). L’é;’)’aﬁ (z)
is a symmetric kernel (i.e., Lé‘oy) B () = L?O”) **F(_z)). In the near flat case its Fourier transform is
given by
Vv, 1 vV, v, vV, vV,
Loy (k) = § [—kQTﬁ” (g, k) + 26T (g, k) + TE" 7 (g, k) — 2T13*" (g, k)} . (175)
The 14 elements of the tensor basis T#*?(q, k), i = 1,..., 14, are defined in [219, 250]. The second

is a local term linear in hi (). Only far away from the hole it takes the form of the stress tensor
of massless scalar partlcles at temperature 81, which has the form of a perfect fluid stress-energy
tensor,

2

v m L, V 1 v v
T(’g) 305 utuy —|—§(77“ +utu¥) |, (176)

where u* is the four-velocity of the plasma and the factor % is the familiar thermal energy

density for massless scalar particles at temperature 3~!. In the far field limit, taking into account
the four-velocity u* of the fluid, a manifestly Lorentz-covariant approach to thermal field theory
may be used [292]. However, in order to simplify the involved tensorial structure, we work in the
co-moving coordinate system of the fluid where u* = (1,0,0,0). In the third line, the Fourier
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transform of the symmetric kernel H**»*#(z) can be expressed as

- K k2| 1
fpab () — _ & o (1 4 L euvab (g,
o) == {5 Qs+ gamesn
772 v,af3 v,af v,a3 v,a3
+180ﬁ4{—T’f’ (1 ) = 25" (u, k) + T4 (u, k) + 24" (u, )}
f v, v, v,o v,a
367 (2T () — 22T, o) = TE (u, ) + 2T, ) |

[t {8t matler P | ] + 0k matie + )P [ ] h s,
(177)

where 1 is a simple redefinition of the renormalization parameter ji given by u = exp(% +
3 In4r — 1v), and the tensors Q"> (k) and Q***#(k) are defined by

v, 3 v,x 1 v,x v,x
Qi) = 5 { T 0 k) — T ) + T )|
1 — 360 1y’ VI — TP (g, ke ! Th P (g, k 178
- é-_ 6 4 ( ) + k4 (Qa ) ﬁ (qv ) ) ( )
Auv,o3 1 2 1 /
QB (k) = [1+576 £ —60(5—6)(1—365)
e (g k) 4+ THP (g, k 1 TV (g, k 1
X 4 (q )+k}4 ( q, )7ﬁ (Q7 ) ) ( 79)
respectively.

In the above and subsequent equations, we denote the coupling parameter in four dimensions
£(4) by &, and consequently ¢ means dé(n)/dn evaluated at n = 4. H**5(k) is the complete
contribution of a free massless quantum scalar field to the thermal graviton polarization ten-
sor [249, , 72, 27], and it is responsible for the instabilities found in flat spacetime at finite
temperature [116, , , 72, 27]. Note that the addition of the contribution of other kinds
of matter fields to the effective action, even graviton contributions, does not change the tensor
structure of these kernels, and only the overall factors are different to leading order [249, ].
Equation (177) reflects the fact that the kernel H**%(k) has thermal as well as non-thermal
contributions. Note that it reduces to the first term in the zero temperature limit (8 — o),

k!

B0 (k) =~ -2

{ |Z3 |Q;wa,8( )_‘_;Qﬂvwaﬁ(k)}’ (180)

and at high temperatures the leading term (3~*) may be written as

2

v,af uv,a3
H B () ~ 507 - ZH )TE (u, K), (181)
where we have introduced the dimensionless external momentum K* = k*/|k| = (r, k). The H,(r)
coefficients were first given in [249, 250] and generalized to the next-to-leading order 872 in [72, 27].
(They are given with the MTW sign convention in [54, 55].)

Finally, as defined above, N****%(z) is the noise kernel representing the random fluctuations of
the thermal radiance and D**:*#(z) is the dissipation kernel, describing the dissipation of energy
of the gravitational field.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-3


http://www.livingreviews.org/lrr-2004-3

Stochastic Gravity: Theory and Applications 61

8.4 Near horizon case

In this case, since the perturbation is taken around the Schwarzschild spacetime, exact expressions
for the corresponding unperturbed propagators Gfb[hffu] are not known. Therefore apart from the
approximation of computing the CTP effective action to certain order in perturbation theory, an
appropriate approximation scheme for the unperturbed Green’s functions is also required. This
feature manifested itself in York’s calculation of backreaction as well, where, in writing the (7),,)
on the right-hand side of the semiclassical Einstein equation in the unperturbed Schwarzschild
metric, he had to use an approximate expression for (T),,) in the Schwarzschild metric given by
Page [231]. The additional complication here is that while to obtain (7},,) as in York’s calculation
the knowledge of only the thermal Feynman Green’s function is required; however, to calculate the
CTP effective action one needs the knowledge of the full matrix propagator, which involves the
Feynman, Schwinger, and Wightman functions.

It is indeed possible to construct the full thermal matrix propagator Gfb[hffy] based on Page’s
approximate Feynman Green’s function by using identities relating the Feynman Green’s function
with the other Green’s functions with different boundary conditions. One can then proceed to
explicitly compute a CTP effective action and hence the influence functional based on this approx-
imation. However, we desist from delving into such a calculation for the following reason. Our
main interest in performing such a calculation is to identify and analyze the noise term which is
the new ingredient in the backreaction. We have mentioned that the noise term gives a stochastic
contribution £*¥ to the Einstein—Langevin equation (14). We had also stated that this term is
related to the variance of fluctuations in 7}, i.e, schematically, to <T3V>. However, a calculation
of (Tﬁ,,} in the Hartle-Hawking state in a Schwarzschild background using the Page approximation
was performed by Phillips and Hu [244, , ], and it was shown that though the approximation
is excellent as far as (T},,) is concerned, it gives unacceptably large errors for (T77,) at the horizon.
In fact, similar errors will be propagated in the non-local dissipation term as well, because both
terms originate from the same source, that is, they come from the last trace term in Equation (169)
which contains terms quadratic in the Green’s function. However, the Influence Functional or CTP
formalism itself does not depend on the nature of the approximation, so we will attempt to exhibit
the general structure of the calculation without resorting to a specific form for the Green’s function
and conjecture on what is to be expected. A more accurate computation can be performed using
this formal structure once a better approximation becomes available.

The general structure of the CTP effective action arising from the calculation of the traces in
equation (169) remains the same. But to write down explicit expressions for the non-local kernels
one requires the input of the explicit form of Gfb [hﬁy] in the Schwarzschild metric, which is not
available in closed form. We can make some general observations about the terms in there. The
first line containing L. does not have an explicit Fourier representation as given in the far field
case, neither will T/ in the second line representing the zeroth order contribution to (7},,) have
a perfect fluid form. The third and fourth terms containing the remaining quadratic component
of the real part of the effective action will not have any simple or even complicated analytic form.
The symmetry properties of the kernels H**:*#(z, ') and D****(z, ') remain intact, i.e., they are
even and odd in z,2’, respectively. The last term in the CTP effective action gives the imaginary
part of the effective action and the kernel N(z,z’) is symmetric.

Continuing our general observations from this CTP effective action, using the connection be-
tween this thermal CTP effective action to the influence functional [272, 43] via an equation in the
schematic form (17), we see that the nonlocal imaginary term containing the kernel N*":*%(z, 2)
is responsible for the generation of the stochastic noise term in the Einstein—Langevin equation,
and the real non-local term containing kernel D***8(z 2') is responsible for the non-local dissi-
pation term. To derive the Einstein—Langevin equation we first construct the stochastic effective
action (27). We then derive the equation of motion, as shown earlier in Equation (29), by taking
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its functional derivative with respect to [h,,] and equating it to zero. With the identification of
noise and dissipation kernels, one can write down a linear, non-local relation of the form

N(t—1t) :/d(s—s')K(t—tﬂs—s’)’y(s—s’), (182)
where D(t,t') = —0y~(t,t'). This is the general functional form of a fluctuation-dissipation re-
lation, and K(¢,s) is called the fluctuation-dissipation kernel [32, , , ]. In the present

context this relation depicts the backreaction of thermal Hawking radiance for a black hole in
quasi-equilibrium.

8.5 The Einstein—Langevin equation

In this section we show how a semiclassical Einstein—Langevin equation can be derived from the
previous thermal CTP effective action. This equation depicts the stochastic evolution of the
perturbations of the black hole under the influence of the fluctuations of the thermal scalar field.

The influence functional Fip = exp (iSir) previously introduced in Equation (16) can be written
in terms of the the CTP effective action Sgﬁ [hfy] derived in Equation (174) using Equation (17).
The Einstein-Langevin equation follows from taking the functional derivative of the stochastic
effective action (27) with respect to [h,,](z) and imposing [h,,](z) = 0. This leads to

1 1
/d4x' L‘“”aﬁ(a: — ') hap(a') + =T

167GN (o) 927 (B)
+ / d*z’ (H" P (z —a') — D" P (z — ")) hag(z') + £ (z) = 0, (183)
where
(@) (a")), = NHP(a — o). (184)
In the far field limit this equation should reduce to that obtained by Campos and Hu [54, 55]: For

gravitational perturbations h#¥ defined in Equation (165) under the harmonic gauge h*” , = 0,
their Einstein—Langevin equation is given by

7 pv 1 v v, v,a 1. po v
OrM (x) + 1671'G%\1{T(%) +2Ppg,aﬁ/d4x/(H# ) ’G(xfx') _ Dk ﬁ(xfg:’)) hP7 (2') + 26" (x)} =0,
(185)

where the tensor P,s o3 is given by

Ppo—,aﬁ = % (npa Nop + MpB Noa — Npo naﬁ) . (186)
The expression for P,s g in the near horizon limit of course cannot be expressed in such a simple
form. Note that this differential stochastic equation includes a non-local term responsible for the
dissipation of the gravitational field and a noise source term which accounts for the fluctuations
of the quantum field. Note also that this equation in combination with the correlation for the
stochastic variable (184) determines the two-point correlation for the stochastic metric fluctuations
(huu(z)hag(2'))e self-consistently.

As we have seen before and here, the Einstein—Langevin equation is a dynamical equation
governing the dissipative evolution of the gravitational field under the influence of the fluctuations
of the quantum field, which, in the case of black holes, takes the form of thermal radiance. From
its form we can see that even for the quasi-static case under study the backreaction of Hawking
radiation on the black hole spacetime has an innate dynamical nature.
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For the far field case, making use of the explicit forms available for the noise and dissipation
kernels, Campos and Hu [54, 55] formally proved the existence of a fluctuation-dissipation relation
at all temperatures between the quantum fluctuations of the thermal radiance and the dissipation
of the gravitational field. They also showed the formal equivalence of this method with linear
response theory for lowest order perturbations of a near-equilibrium system, and how the response
functions such as the contribution of the quantum scalar field to the thermal graviton polarization
tensor can be derived. An important quantity not usually obtained in linear response theory, but
of equal importance, manifest in the CTP stochastic approach is the noise term arising from the
quantum and statistical fluctuations in the thermal field. The example given in this section shows
that the backreaction is intrinsically a dynamic process described (at this level of sophistication)
by the Einstein—Langevin equation.

8.6 Discussions

‘We make a few remarks here and draw some connection with related work on black hole fluctuations.

8.6.1 Black hole backreaction

As remarked earlier, except for the near-flat case, an analytic form of the Green function is not
available. Even the Page approximation [231], which gives unexpectedly good results for the stress-
energy tensor, has been shown to fail in the fluctuations of the energy density [245, ]. Thus,
using such an approximation for the noise kernel will give unreliable results for the Einstein—
Langevin equation. If we confine ourselves to Page’s approximation and derive the equation of
motion without the stochastic term, we expect to recover York’s semiclassical Einstein equation if
one retains only the zeroth order contribution, i.e, the first two terms in the expression for the CTP
effective action in Equation (174). Thus, this offers a new route to arrive at York’s semiclassical
Einstein equations. Not only is it a derivation of York’s result from a different point of view, but it
also shows how his result arises as an appropriate limit of a more complete framework, i.e, it arises
when one averages over the noise. Another point worth noting is that our treatment will also yield
a non-local dissipation term arising from the fourth term in Equation (174) in the CTP effective
action which is absent in York’s treatment. This difference is primarily due to the difference in the
way backreaction is treated, at the level of iterative approximations on the equation of motion as
in York, versus the treatment at the effective action level as pursued here. In York’s treatment,
the Einstein tensor is computed to first order in perturbation theory, while (7},,) on the right-hand
side of the semiclassical Einstein equation is replaced by the zeroth order term. In the effective
action treatment the full effective action is computed to second order in perturbation, and hence
includes the higher order non-local terms.

The other important conceptual point that comes to light from this approach is that related
to the fluctuation-dissipation relation. In the quantum Brownian motion analog (see, e.g., [32,

, , ] and references therein), the dissipation of the energy of the Brownian particle as
it approaches equilibrium and the fluctuations at equilibrium are connected by the fluctuation-
dissipation relation. Here the backreaction of quantum fields on black holes also consists of two
forms — dissipation and fluctuation or noise — corresponding to the real and imaginary parts of
the influence functional as embodied in the dissipation and noise kernels. A fluctuation-dissipation
relation has been shown to exist for the near flat case by Campos and Hu [54, 55] and we anticipate
that it should also exist between the noise and dissipation kernels for the general case, as it is a
categorical relation [32, , , , ]. Martin and Verdaguer have also proved the existence of
a fluctuation-dissipation relation when the semiclassical background is a stationary spacetime and
the quantum field is in thermal equilibrium. Their result was then extended to a conformal field in
a conformally stationary background [207]. The existence of a fluctuation-dissipation relation for
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the black hole case has been discussed by some authors previously [60, , , 217]. In [164], Hu,
Raval, and Sinha have described how this approach and its results differ from those of previous
authors. The fluctuation-dissipation relation reveals an interesting connection between black holes
interacting with quantum fields and non-equilibrium statistical mechanics. Even in its restricted
quasi-static form, this relation will allow us to study mnonequilibrium thermodynamic properties
of the black hole under the influence of stochastic fluctuations of the energy-momentum tensor
dictated by the noise terms.

There are limitations of a technical nature in the specific example invoked here. For one we
have to confine ourselves to small perturbations about a background metric. For another, as
mentioned above, there is no reliable approximation to the Schwarzschild thermal Green’s function
to explicitly compute the noise and dissipation kernels. This limits our ability to present explicit
analytical expressions for these kernels. Omne can try to improve on Page’s approximation by
retaining terms to higher order. A less ambitious first step could be to confine attention to the
horizon and using approximations that are restricted to near the horizon and work out the Influence
Functional in this regime.

Yet another technical limitation of the specific example is the following. Although we have
allowed for backreaction effects to modify the initial state in the sense that the temperature of the
Hartle-Hawking state gets affected by the backreaction, we have essentially confined our analysis
to a Hartle-Hawking thermal state of the field. This analysis does not directly extend to a more
general class of states, for example to the case where the initial state of the field is in the Unruh
vacuum. Thus, we will not be able to comment on issues of the stability of an isolated radiating
black hole under the influence of stochastic fluctuations.

8.6.2 Metric fluctuations in black holes

In addition to the work described above by Campos, Hu, Raval, and Sinha [54, 55, , ] and
earlier work quoted therein, we mention also some recent work on black hole metric fluctuations
and their effect on Hawking radiation. For example, Casher et al. [64] and Sorkin [267, 268] have
concentrated on the issue of fluctuations of the horizon induced by a fluctuating metric. Casher
et al. [64] consider the fluctuations of the horizon induced by the “atmosphere” of high angular
momentum particles near the horizon, while Sorkin [267, 268] calculates fluctuations of the shape
of the horizon induced by the quantum field fluctuations under a Newtonian approximation. Both
group of authors come to the conclusion that horizon fluctuations become large at scales much
larger than the Planck scale (note that Ford and Svaiter [94] later presented results contrary to this
claim). However, though these works do deal with backreaction, the fluctuations considered do not
arise as an explicit stochastic noise term as in our treatment. It may be worthwhile exploring the
horizon fluctuations induced by the stochastic metric in our model and comparing the conclusions
with the above authors. Barrabes et al. [14, 15] have considered the propagation of null rays and
massless fields in a black hole fluctuating geometry, and have shown that the stochastic nature
of the metric leads to a modified dispersion relation and helps to confront the trans-Planckian
frequency problem. However, in this case the stochastic noise is put in by hand and does not
naturally arise from coarse graining as in the quantum open systems approach. It also does not
take backreaction into account. It will be interesting to explore how a stochastic black hole metric,
arising as a solution to the Einstein—Langevin equation, hence fully incorporating backreaction,
would affect the trans-Planckian problem.

Ford and his collaborators [94, 95, ] have also explored the issue of metric fluctuations
in detail and in particular have studied the fluctuations of the black hole horizon induced by
metric fluctuations. However, the fluctuations they have considered are in the context of a fixed
background and do not relate to the backreaction.

Another work originating from the same vein of stochastic gravity but not complying with the
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backreaction spirit is that of Hu and Shiokawa [166], who study effects associated with electro-
magnetic wave propagation in a Robertson-Walker universe and the Schwarzschild spacetime with
a small amount of given metric stochasticity. They find that time-independent randomness can
decrease the total luminosity of Hawking radiation due to multiple scattering of waves outside the
black hole and gives rise to event horizon fluctuations and fluctuations in the Hawking tempera-
ture. The stochasticity in a background metric in their work is assumed rather than derived (from
quantum field fluctuations, as in this work), and so is not in the same spirit of backreaction. But it
is interesting to compare their results with that of backreaction, so one can begin to get a sense of

the different sources of stochasticity and their weights (see, e.g., [154] for a list of possible sources
of stochasticity).
In a subsequent paper Shiokawa [261] showed that the scalar and spinor waves in a stochastic

spacetime behave similarly to the electrons in a disordered system. Viewing this as a quantum
transport problem, he expressed the conductance and its fluctuations in terms of a nonlinear
sigma model in the closed time path formalism and showed that the conductance fluctuations
are universal, independent of the volume of the stochastic region and the amount of stochasticity.
This result can have significant importance in characterizing the mesoscopic behavior of spacetimes
resting between the semiclassical and the quantum regimes.
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9 Concluding Remarks

In the first part of this review on the fundamentals of theory we have given two routes to the
establishment of stochastic gravity and derived a general (finite) expression for the noise kernel.
In the second part we gave three applications, the correlation functions of gravitons in a perturbed
Minkowski metric, structure formation in stochastic gravity theory, and the outline of a program
for the study of black hole fluctuations and backreaction. A central issue which stochastic gravity
can perhaps best address is the validity of semiclassical gravity as measured by the fluctuations of
stress-energy compared to the mean. We will include a review of this topic in a future update.

There is ongoing research related to the topics discussed in this review. On the theory side,
Roura and Verdaguer [255] have recently shown how stochastic gravity can be related to the large N
limit of quantum metric fluctuations. Given N free matter fields interacting with the gravitational
field, Hartle and Horowitz [128], and Tomboulis [277] have shown that semiclassical gravity can
be obtained as the leading order large N limit (while keeping N times the gravitational coupling
constant fixed). It is of interest to find out where in this setting can one place the fluctuations of
the quantum fields and the metric fluctuations they induce; specifically, whether the inclusion of
these sources will lead to an Einstein-Langevin equation [413, , , b8, ], as it was derived
historically in other ways, as described in the first part of this review. This is useful because it
may provide another pathway or angle in connecting semiclassical to quantum gravity (a related
idea is the kinetic theory approach to quantum gravity described in [155]).

Theoretically, stochastic gravity is at the frontline of the ‘bottom-up’ approach to quantum
gravity [140, , ]. Structurally, as can be seen from the issues discussed and the applications
given, stochastic gravity has a very rich constituency because it is based on quantum field theory
and nonequilibrium statistical mechanics in a curved spacetime context. The open systems concepts
and the closed-time-path/influence functional methods constitute an extended framework suitable
for treating the backreaction and fluctuations problems of dynamical spacetimes interacting with
quantum fields. We have seen it applied to cosmological backreaction problems. It can also be
applied to treat the backreaction of Hawking radiation in a fully dynamical black hole collapse
situation. One can then address related issues such as the black hole end state and information
loss puzzles (see, e.g., [230, | and references therein). The main reason why this program has
not progressed as swiftly as desired is due more to technical rather than programatic difficulties
(such as finding reasonable analytic approximations for the Green function or numerical evaluation
of mode-sums near the black hole horizon). Finally, the multiplex structure of this theory could be
used to explore new lines of inquiry and launch new programs of research, such as nonequilibrium
black hole thermodynamics and statistical mechanics.
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