9,431 research outputs found
'For this I was made': conflict and calling in the role of a woman priest
There has been an increasing focus on ‘work as calling’ in recent years, but relatively few empirical sociological accounts that shed light on the experience of performing calling work. Although callings have generally been referred to as positive and fulfilling to the individual and as beneficial to society, researchers have also suggested there is a ‘dark side’ to calling, and have drawn attention to the potential conflicts and tensions inherent in the pursuit of calling, especially for women. This article explores these themes through the first-hand experiences of one woman who felt called to work as a priest. Her narrative illustrates how callings draw the individual irresistibly towards a particular line of work. It also shows how calling work can be both satisfying individually and beneficial to the wider community but, at the same time, involves sacrifice, compromise and a willingness to defer personal rewards
Unravelling contamination signals in biogenic silica oxygen isotope composition: the role of major and trace element geochemistry
The oxygen isotope composition of diatom silica (delta O-18(diatom)) provides valuable information for palaeoclimate studies where carbonate proxies are either rare or absent in many lakes and ocean sediments. Unfortunately, mineral and rock fragments found alongside diatoms in most sediments can be problematic as the method used will liberate oxygen from all components within the sediment, producing both high-frequency noise and low-frequency excursions that can resemble climate signals. Removal of mineral contamination to date has largely relied upon the combination of chemical leaching and physical separation techniques (e.g. sieving, density). This combination can be inefficient and often significant proportions of contaminants are present in the 'purified' diatom sample. Using electron optical imaging and whole-rock geochemistry on previously 'purified' diatom samples, a mass balance approach has been developed whereby the types and proportions of residual contaminants are identified. By integrating this information with measured oxygen isotope ratios of the contaminants, it is then possible to remove contamination effects from the delta O-18(diatom) record. Contamination effects relating to carbonates, tephra and silt are modelled for cores from Lake Tilo (Ethiopia) and Lake Baikal (Siberia). In both lakes the new modelled delta O-18(diatom) curves show less high-frequency noise, thus enabling better resolution of low-frequency climate signals. (c) Natural Environment Research Council (NERC) copyright 2008. Reproduced with the permission of NERC. Published by John Wiley & Sons Ltd
Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection
Transmission reduction is a key component of global efforts to control and eliminate malaria; yet, it is unclear how the density of transmission stages (gametocytes) influences infection (proportion of mosquitoes infected). Human to mosquito transmission was assessed using 171 direct mosquito feeding assays conducted in Burkina Faso and Kenya. Plasmodium falciparum infects Anopheles gambiae efficiently at low densities (4% mosquitoes at 1/µl blood), although substantially more (>200/µl) are required to increase infection further. In a site in Burkina Faso, children harbour more gametocytes than adults though the non-linear relationship between gametocyte density and mosquito infection means that (per person) they only contribute slightly more to transmission. This method can be used to determine the reservoir of infection in different endemic settings. Interventions reducing gametocyte density need to be highly effective in order to halt human-mosquito transmission, although their use can be optimised by targeting those contributing the most to transmission. DOI:http://dx.doi.org/10.7554/eLife.00626.001
Practical computational toolkits for dendrimers and dendrons structure design
Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface (GUI) toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.Peer reviewe
Evolution of opinions on social networks in the presence of competing committed groups
Public opinion is often affected by the presence of committed groups of
individuals dedicated to competing points of view. Using a model of pairwise
social influence, we study how the presence of such groups within social
networks affects the outcome and the speed of evolution of the overall opinion
on the network. Earlier work indicated that a single committed group within a
dense social network can cause the entire network to quickly adopt the group's
opinion (in times scaling logarithmically with the network size), so long as
the committed group constitutes more than about 10% of the population (with the
findings being qualitatively similar for sparse networks as well). Here we
study the more general case of opinion evolution when two groups committed to
distinct, competing opinions and , and constituting fractions and
of the total population respectively, are present in the network. We show
for stylized social networks (including Erd\H{o}s-R\'enyi random graphs and
Barab\'asi-Albert scale-free networks) that the phase diagram of this system in
parameter space consists of two regions, one where two stable
steady-states coexist, and the remaining where only a single stable
steady-state exists. These two regions are separated by two fold-bifurcation
(spinodal) lines which meet tangentially and terminate at a cusp (critical
point). We provide further insights to the phase diagram and to the nature of
the underlying phase transitions by investigating the model on infinite
(mean-field limit), finite complete graphs and finite sparse networks. For the
latter case, we also derive the scaling exponent associated with the
exponential growth of switching times as a function of the distance from the
critical point.Comment: 23 pages: 15 pages + 7 figures (main text), 8 pages + 1 figure + 1
table (supplementary info
Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups
A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper
Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.
Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour
A reliability-based approach for influence maximization using the evidence theory
The influence maximization is the problem of finding a set of social network
users, called influencers, that can trigger a large cascade of propagation.
Influencers are very beneficial to make a marketing campaign goes viral through
social networks for example. In this paper, we propose an influence measure
that combines many influence indicators. Besides, we consider the reliability
of each influence indicator and we present a distance-based process that allows
to estimate the reliability of each indicator. The proposed measure is defined
under the framework of the theory of belief functions. Furthermore, the
reliability-based influence measure is used with an influence maximization
model to select a set of users that are able to maximize the influence in the
network. Finally, we present a set of experiments on a dataset collected from
Twitter. These experiments show the performance of the proposed solution in
detecting social influencers with good quality.Comment: 14 pages, 8 figures, DaWak 2017 conferenc
Comparing the Effect of Concept Mapping and Conventional Methods on Nursing Students' Practical Skill Score
Background: Development of practical skills in the field of nursing education has remained a serious and considerable challenge in nursing education. Moreover, newly graduated nurses may have weak practical skills, which can be a threat to patients’ safety.
Objectives: The present study was conducted to compare the effect of concept mapping and conventional methods on nursing students’ practical skills.
Patients and Methods: This quasi-experimental study was conducted on 70 nursing students randomly assigned into two groups of 35 people. The intervention group was taught through concept mapping method, while the control group was taught using conventional method. A two-part instrument was used including a demographic information form and a checklist for direct observation of procedural skills. Descriptive statistics, chi-square, independent samples t-tests and paired t-test were used to analyze data.
Results: Before education, no significant differences were observed between the two groups in the three skills of cleaning (P = 0.251), injection (P = 0.185) and sterilizing (P = 0.568). The students mean scores were significantly increased after the education and the difference between pre and post intervention of students mean scores were significant in the both groups (P < 0.001). However, after education, in all three skills the mean scores of the intervention group were significantly higher than the control group (P < 0.001).
Conclusions: Concept mapping was superior to conventional skill teaching methods. It is suggested to use concept mapping in teaching practical courses such as fundamentals of nursing
The impact of Stieltjes' work on continued fractions and orthogonal polynomials
Stieltjes' work on continued fractions and the orthogonal polynomials related
to continued fraction expansions is summarized and an attempt is made to
describe the influence of Stieltjes' ideas and work in research done after his
death, with an emphasis on the theory of orthogonal polynomials
- …
