353 research outputs found

    Decay theory of double giant resonances

    Get PDF
    The decay theory of double giant resonances incorporating fluctuation contributions of the Brink-Axel type is developed. The gamma and neutron emission decay of Double Giant Dipole Resonances (DGDR) in 208Pb is discussed in connection with a recent measurement.Comment: 5 pages, Late

    Multiphonon and ``hot''-phonon Isovector Electric-Dipole Excitations

    Get PDF
    We argue that a substantial increase in the cross section for Coulomb excitation in the region of the Double Giant Dipole Resonance should be expected from Coulomb excitation of excited states involved in the spreading of the one-phonon resonance, in a manifestation of the Brink-Axel phenomenon. This generates an additional fluctuating amplitude and a corresponding new term to be added incoherently to the usual cross-section. The appropriate extension of an applicable reaction calculation is considered in order to estimate this effect.Comment: 6 pages, Latex, 1 figure available on reques

    SU(2,1) Dynamics of Multiple Giant Dipole Resonance Coulomb Excitation

    Get PDF
    We construct a three-dimensional analytically soluble model of the nonlinear effects in Coulomb excitation of multiphonon Giant Dipole Resonances (GDR) based on the SU(2,1) algebra. The full 3-dimensional model predicts further enhancement of the Double GDR (DGDR) cross sections at high bombarding energies. Enhancement factors for DGDR measured in thirteen different processes with various projectiles and targets at different bombarding energies are well reproduced with the same value of the nonlinearity parameter with the exception of the anomalous case of 136^{136}Xe which requires a larger value.Comment: 10 pages, 3 Postscript figures, late

    Equilibrium and stability properties of a coupled two-component Bose-Einstein condensate

    Full text link
    The equilibrium and stability properties of a coupled two-component BEC is studied using a variational method and the one-dimensional model of Williams and collaborators. The variational parameters are the population fraction, translation and scaling transformation of the condensate densities, assumed to have a Gaussian shape. We study the equilibrium and stability properties as a function of the strength of the laser field and the traps displacement. We find many branches of equilibrium configurations, with a host of critical points. In all cases, the signature of the onset of criticality is the collapse of a normal mode which is a linear combination of the out of phase translation and an in phase breathing oscillation of the condensate densities. Our calculations also indicate that we have symmetry breaking effects when the traps are not displacedComment: 13 pages,3 figure

    Theory of Multiphonon Excitation in Heavy-Ion Collisions

    Full text link
    We study the effects of channel coupling in the excitation dynamics of giant resonances in relativistic heavy ions collisions. For this purpose, we use a semiclassical approximation to the Coupled-Channels problem and separate the Coulomb and the nuclear parts of the coupling into their main multipole components. In order to assess the importance of multi-step processes, we neglect the resonance widths and solve the set of coupled equations exactly. Finite widths are then considered. In this case, we handle the coupling of the ground state with the dominant Giant Dipole Resonance exactly and study the excitation of the remaining resonances within the Coupled-Channels Born Approximation. A comparison with recent experimental data is made.Comment: 29 pages, 7 Postscript figures available upon reques

    Anomalous anapole moment of an exotic nucleus

    Get PDF
    Using the information on the nuclear structure of exotic neutron-rich halo nucleus 11^{11}Be, we evaluate the parity violating anapole moment in its ground state. The resulting value κ(11\kappa(^{11}Be)=0.17=0.17 is fifteen times bigger than the typical value of the anapole moment of a normal nucleus of the same mass, and in fact exceeds by few times anapole moments of any known neutron-odd nuclei (e.g., kappa(^{11}Be) > 2|\kappa(^{207}Pb)|. It is also few times bigger than the neutral current contribution to the lepton-nucleus interaction.Comment: 12 pages, 2 figure

    Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces

    Get PDF
    Higgs bundles and non-abelian Hodge theory provide holomorphic methods with which to study the moduli spaces of surface group representations in a reductive Lie group G. In this paper we survey the case in which G is the isometry group of a classical Hermitian symmetric space of non-compact type. Using Morse theory on the moduli spaces of Higgs bundles, we compute the number of connected components of the moduli space of representations with maximal Toledo invariant.Comment: v2: added due credits to the work of Burger, Iozzi and Wienhard. v3: corrected count of connected components for G=SU(p,q) (p \neq q); added due credits to the work of Xia and Markman-Xia; minor corrections and clarifications. 31 page

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
    corecore