377 research outputs found

    Development of a minimally invasive microneedle-based sensor for continuous monitoring of β-lactam antibiotic concentrations in vivo

    Get PDF
    Antimicrobial resistance poses a global threat to patient health. Improving the use and effectiveness of antimicrobials is critical in addressing this issue. This includes optimizing the dose of antibiotic delivered to each individual. New sensing approaches that track antimicrobial concentration for each patient in real time could allow individualized drug dosing. This work presents a potentiometric microneedle-based biosensor to detect levels of β-lactam antibiotics in vivo in a healthy human volunteer. The biosensor is coated with a pH-sensitive iridium oxide layer, which detects changes in local pH as a result of β-lactam hydrolysis by β-lactamase immobilized on the electrode surface. Development and optimization of the biosensor coatings are presented, giving a limit of detection of 6.8 μM in 10 mM PBS solution. Biosensors were found to be stable for up to 2 weeks at -20 °C and to withstand sterilization. Sensitivity was retained after application for 6 h in vivo. Proof-of-concept results are presented showing that penicillin concentrations measured using the microneedle-based biosensor track those measured using both discrete blood and microdialysis sampling in vivo. These preliminary results show the potential of this microneedle-based biosensor to provide a minimally invasive means to measure real-time β-lactam concentrations in vivo, representing an important first step toward a closed-loop therapeutic drug monitoring system

    Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions

    Full text link
    The rise of topological phases of matter is strongly connected to their potential to host Majorana bound states, a powerful ingredient in the search for a robust, topologically protected, quantum information processing. In order to produce such states, a method of choice is to induce superconductivity in topological insulators. The engineering of the interplay between superconductivity and the electronic properties of a topological insulator is a challenging task and it is consequently very important to understand the physics of simple superconducting devices such as Josephson junctions, in which new topological properties are expected to emerge. In this article, we review recent experiments investigating topological superconductivity in topological insulators, using microwave excitation and detection techniques. More precisely, we have fabricated and studied topological Josephson junctions made of HgTe weak links in contact with two Al or Nb contacts. In such devices, we have observed two signatures of the fractional Josephson effect, which is expected to emerge from topologically-protected gapless Andreev bound states. We first recall the theoretical background on topological Josephson junctions, then move to the experimental observations. Then, we assess the topological origin of the observed features and conclude with an outlook towards more advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017, published in "Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer

    Sequencing of Androgen-Deprivation Therapy of Short Duration With Radiotherapy for Nonmetastatic Prostate Cancer (SANDSTORM): A Pooled Analysis of 12 Randomized Trials.

    Get PDF
    PURPOSE: The sequencing of androgen-deprivation therapy (ADT) with radiotherapy (RT) may affect outcomes for prostate cancer in an RT-field size-dependent manner. Herein, we investigate the impact of ADT sequencing for men receiving ADT with prostate-only RT (PORT) or whole-pelvis RT (WPRT). MATERIALS AND METHODS: Individual patient data from 12 randomized trials that included patients receiving neoadjuvant/concurrent or concurrent/adjuvant short-term ADT (4-6 months) with RT for localized disease were obtained from the Meta-Analysis of Randomized trials in Cancer of the Prostate consortium. Inverse probability of treatment weighting (IPTW) was performed with propensity scores derived from age, initial prostate-specific antigen, Gleason score, T stage, RT dose, and mid-trial enrollment year. Metastasis-free survival (primary end point) and overall survival (OS) were assessed by IPTW-adjusted Cox regression models, analyzed independently for men receiving PORT versus WPRT. IPTW-adjusted Fine and Gray competing risk models were built to evaluate distant metastasis (DM) and prostate cancer-specific mortality. RESULTS: Overall, 7,409 patients were included (6,325 neoadjuvant/concurrent and 1,084 concurrent/adjuvant) with a median follow-up of 10.2 years (interquartile range, 7.2-14.9 years). A significant interaction between ADT sequencing and RT field size was observed for all end points (P interaction < .02 for all) except OS. With PORT (n = 4,355), compared with neoadjuvant/concurrent ADT, concurrent/adjuvant ADT was associated with improved metastasis-free survival (10-year benefit 8.0%, hazard ratio [HR], 0.65; 95% CI, 0.54 to 0.79; P < .0001), DM (subdistribution HR, 0.52; 95% CI, 0.33 to 0.82; P = .0046), prostate cancer-specific mortality (subdistribution HR, 0.30; 95% CI, 0.16 to 0.54; P < .0001), and OS (HR, 0.69; 95% CI, 0.57 to 0.83; P = .0001). However, in patients receiving WPRT (n = 3,049), no significant difference in any end point was observed in regard to ADT sequencing except for worse DM (HR, 1.57; 95% CI, 1.20 to 2.05; P = .0009) with concurrent/adjuvant ADT. CONCLUSION: ADT sequencing exhibits a significant impact on clinical outcomes with a significant interaction with field size. Concurrent/adjuvant ADT should be the standard of care where short-term ADT is indicated in combination with PORT

    Microneedle biosensors for real-time, minimally invasive drug monitoring of phenoxymethylpenicillin: a first-in-human evaluation in healthy volunteers

    Get PDF
    Background: We report the first-in-human evaluation of realtime penicillin monitoring using a microneedle-based beta-lactam biosensor.Methods: Participants taking phenoxymethylpenicillin (penicillin-V) at steady state had venous blood (via cannula, T=- 30,0,10,20,30,45,60,90,120,150,180,210,240mins) and extracellular fluid (ECF; via microdialysis, every 15mins) pharmacokinetic (PK) samples taken during one dosing interval. During this period, a solid microneedle betalactam biosensor was worn to provide real-time monitoring of ECF penicillin-V concentration. Penicillin-V concentration data obtained from the microneedles was calibrated using locally-estimated-scatter-plot smoothing and compared to free blood and microdialysis (gold standard) data. Penicillin-V PK for each method was evaluated using noncompartmental analysis. Area-under-the-concentration-time-curve (AUC), Cmax, and tmax were compared. Bias and limits of agreement were investigated with Bland-Altman plots. Microneedle biosensor limits of detection were estimated. The study was approved by London-HarrowRegional ethics committee (Ref:18/LO/0054, NCT03847610).Findings: Ten healthy volunteers participated. Mean (SD) age was 42 (14) years. Seven (70%) were male. Penicillin-V ECF determined through microdialysis and microneedle methods demonstrated similar Cmax (0.74mg/L vs. 0.64mg/L, p=0.53; 95%CI: -0.24;0.44), tmax (1.18hrs vs. 1.10hrs, p=0.79; 95%CI:-0.52;0.67), and AUC (1.54mg*h/L vs. 1.67 mg*h/L p=0.79;95%CI:-1.10;0.85). In total, 440 time points were compared with mean (95%CI) difference between measurements -0.15 mg/L (95%CI:-0.11;0.20). Mean (SD) penicillin-V AUC values for free serum and microneedle PK were similar at 1.77 (0.59) mg*h/L and 1.67 (1.06) mg*h/L, respectively (p=0.81; 95%CI:-0.77;0.97). Percentage coefficient of variation betweensensors within individuals was median (IQR) 7 (4-17)%. Limit of detection for the microneedles was estimated at 0.17 mg/L.Interpretation: This demonstrates proof-of-concept of real-time, microneedle sensing of penicillin in vivo. Future work will explore microneedle use in patient populations, their role in data generation to inform dosing recommendations, and their incorporation into closed-loop control systems for automated drug delivery

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    The Development of Three Long Universal Nuclear Protein-Coding Locus Markers and Their Application to Osteichthyan Phylogenetics with Nested PCR

    Get PDF
    BACKGROUND: Universal nuclear protein-coding locus (NPCL) markers that are applicable across diverse taxa and show good phylogenetic discrimination have broad applications in molecular phylogenetic studies. For example, RAG1, a representative NPCL marker, has been successfully used to make phylogenetic inferences within all major osteichthyan groups. However, such markers with broad working range and high phylogenetic performance are still scarce. It is necessary to develop more universal NPCL markers comparable to RAG1 for osteichthyan phylogenetics. METHODOLOGY/PRINCIPAL FINDINGS: We developed three long universal NPCL markers (>1.6 kb each) based on single-copy nuclear genes (KIAA1239, SACS and TTN) that possess large exons and exhibit the appropriate evolutionary rates. We then compared their phylogenetic utilities with that of the reference marker RAG1 in 47 jawed vertebrate species. In comparison with RAG1, each of the three long universal markers yielded similar topologies and branch supports, all in congruence with the currently accepted osteichthyan phylogeny. To compare their phylogenetic performance visually, we also estimated the phylogenetic informativeness (PI) profile for each of the four long universal NPCL markers. The PI curves indicated that SACS performed best over the whole timescale, while RAG1, KIAA1239 and TTN exhibited similar phylogenetic performances. In addition, we compared the success of nested PCR and standard PCR when amplifying NPCL marker fragments. The amplification success rate and efficiency of the nested PCR were overwhelmingly higher than those of standard PCR. CONCLUSIONS/SIGNIFICANCE: Our work clearly demonstrates the superiority of nested PCR over the conventional PCR in phylogenetic studies and develops three long universal NPCL markers (KIAA1239, SACS and TTN) with the nested PCR strategy. The three markers exhibit high phylogenetic utilities in osteichthyan phylogenetics and can be widely used as pilot genes for phylogenetic questions of osteichthyans at different taxonomic levels

    Mosquitoes infected with dengue viruses in Brazil

    Get PDF
    Dengue epidemics have been reported in Brazil since 1985. The scenery has worsened in the last decade because several serotypes are circulating and producing a hyper-endemic situation, with an increase of DHF/DSS cases as well as the number of fatalities. Herein, we report dengue virus surveillance in mosquitoes using a Flavivirus genus-specific RT-Hemi-Nested-PCR assay. The mosquitoes (Culicidae, n = 1700) collected in the Northeast, Southeast and South of Brazil, between 1999 and 2005, were grouped into 154 pools. Putative genomes of DENV-1, -2 and -3 were detected in 6 mosquito pools (3.8%). One amplicon of putative DENV-1 was detected in a pool of Haemagogus leucocelaenus suggesting that this virus could be involved in a sylvatic cycle. DENV-3 was found infecting 3 pools of larvae of Aedes albopictus and the nucleotide sequence of one of these viruses was identified as DENV-3 of genotype III, phylogenetically related to other DENV-3 isolated in Brazil. This is the first report of a nucleotide sequence of DENV-3 from larvae of Aedes albopictus

    The role of sexually transmitted infections in male circumcision effectiveness against HIV – insights from clinical trial simulation

    Get PDF
    BACKGROUND: A landmark randomised trial of male circumcision (MC) in Orange Farm, South Africa recently showed a large and significant reduction in risk of HIV infection, reporting MC effectiveness of 61% (95% CI: 34%–77%). Additionally, two further randomised trials of MC in Kisumu, Kenya and Rakai, Uganda were recently stopped early to report 53% and 48% effectiveness, respectively. Since MC may protect against both HIV and certain sexually transmitted infections (STI), which are themselves cofactors of HIV infection, an important question is the extent to which this estimated effectiveness against HIV is mediated by the protective effect of circumcision against STI. The answer lies in the trial data if the appropriate statistical analyses can be identified to estimate the separate efficacies against HIV and STI, which combine to determine overall effectiveness. OBJECTIVES AND METHODS: Focusing on the MC trial in Kisumu, we used a stochastic prevention trial simulator (1) to determine whether statistical analyses can validly estimate efficacy, (2) to determine whether MC efficacy against STI alone can produce large effectiveness against HIV and (3) to estimate the fraction of all HIV infections prevented that are attributable to efficacy against STI when both efficacies combine. RESULTS: Valid estimation of separate efficacies against HIV and STI as well as MC effectiveness is feasible with available STI and HIV trial data, under Kisumu trial conditions. Under our parameter assumptions, high overall effectiveness of MC against HIV was observed only with a high MC efficacy against HIV and was not possible on the basis of MC efficacy against STI alone. The fraction of all HIV infections prevented which were attributable to MC efficacy against STI was small, except when efficacy of MC specifically against HIV was very low. In the three MC trials which reported between 48% and 61% effectiveness (combining STI and HIV efficacies), the fraction of HIV infections prevented in circumcised males which were attributable to STI was unlikely to be more than 10% to 20%. CONCLUSION: Estimation of efficacy, attributable fraction and effectiveness leads to improved understanding of trial results, gives trial results greater external validity and is essential to determine the broader public health impact of circumcision to men and women
    • …
    corecore