482 research outputs found

    Information heat engine: converting information to energy by feedback control

    Full text link
    In 1929, Leo Szilard invented a feedback protocol in which a hypothetical intelligence called Maxwell's demon pumps heat from an isothermal environment and transduces it to work. After an intense controversy that lasted over eighty years; it was finally clarified that the demon's role does not contradict the second law of thermodynamics, implying that we can convert information to free energy in principle. Nevertheless, experimental demonstration of this information-to-energy conversion has been elusive. Here, we demonstrate that a nonequilibrium feedback manipulation of a Brownian particle based on information about its location achieves a Szilard-type information-energy conversion. Under real-time feedback control, the particle climbs up a spiral-stairs-like potential exerted by an electric field and obtains free energy larger than the amount of work performed on it. This enables us to verify the generalized Jarzynski equality, or a new fundamental principle of "information-heat engine" which converts information to energy by feedback control.Comment: manuscript including 7 pages and 4 figures and supplementary material including 6 pages and 8 figure

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Calculation of the relative metastabilities of proteins using the CHNOSZ software package

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteins of various compositions are required by organisms inhabiting different environments. The energetic demands for protein formation are a function of the compositions of proteins as well as geochemical variables including temperature, pressure, oxygen fugacity and pH. The purpose of this study was to explore the dependence of metastable equilibrium states of protein systems on changes in the geochemical variables.</p> <p>Results</p> <p>A software package called CHNOSZ implementing the revised Helgeson-Kirkham-Flowers (HKF) equations of state and group additivity for ionized unfolded aqueous proteins was developed. The program can be used to calculate standard molal Gibbs energies and other thermodynamic properties of reactions and to make chemical speciation and predominance diagrams that represent the metastable equilibrium distributions of proteins. The approach takes account of the chemical affinities of reactions in open systems characterized by the chemical potentials of basis species. The thermodynamic database included with the package permits application of the software to mineral and other inorganic systems as well as systems of proteins or other biomolecules.</p> <p>Conclusion</p> <p>Metastable equilibrium activity diagrams were generated for model cell-surface proteins from archaea and bacteria adapted to growth in environments that differ in temperature and chemical conditions. The predicted metastable equilibrium distributions of the proteins can be compared with the optimal growth temperatures of the organisms and with geochemical variables. The results suggest that a thermodynamic assessment of protein metastability may be useful for integrating bio- and geochemical observations.</p

    Progression of atypical parkinsonian syndromes: PROSPECT-M-UK study implications for clinical trials

    Get PDF
    The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based endpoint selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy, corticobasal syndrome, multiple system atrophy and related disorders, to compare candidate clinical trial endpoints. In this multicentre United Kingdom study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and magnetic resonance imaging assessments at baseline, six and twelve-months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, progressive supranuclear palsy-subcortical (progressive supranuclear palsy-parkinsonism and progressive gait freezing subtypes), progressive supranuclear palsy-cortical (progressive supranuclear palsy-frontal, progressive supranuclear palsy-speech-and-language, and progressive supranuclear palsy-corticobasal syndrome subtypes), multiple system atrophy-parkinsonism, multiple system atrophy-cerebellar, corticobasal syndrome with and without evidence of Alzheimer’s disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling, and sample sizes for clinical trials of disease modifying agents, according to group and assessment type. Two hundred forty-three people were recruited (117 progressive supranuclear palsy, 68 corticobasal syndrome, 42 multiple system atrophy and 16 indeterminate; 138 [56.8%] male; age at recruitment 68.7 ± 8.61 years). One hundred fifty-nine completed six-month assessment (82 progressive supranuclear palsy, 27 corticobasal syndrome, 40 multiple system atrophy and 10 indeterminate) and 153 completed twelve-month assessment (80 progressive supranuclear palsy, 29 corticobasal syndrome, 35 multiple system atrophy and 9 indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N &amp;lt; 100 required for one-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease specific. In conclusion, phenotypic variance within progressive supranuclear palsy, corticobasal syndrome and multiple system atrophy is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial endpoints, from potential functional, cognitive, clinical or neuroimaging measures of disease progression

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Diagnosis Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Syndrome

    Get PDF
    IMPORTANCE: Patients with atypical parkinsonian syndromes (APS), including progressive supranuclear palsy (PSP), corticobasal syndrome (CBS) and multiple system atrophy (MSA), may be difficult to distinguish in early stages and are often misdiagnosed as Parkinson’s disease (PD). The diagnostic criteria for PSP have been updated to encompass a range of clinical subtypes, but have not been prospectively studied. OBJECTIVE: To define the distinguishing features of PSP and CBS, and to assess their usefulness in facilitating early diagnosis and separation from PD. DESIGN, SETTING, PARTICIPANTS: Cohort study which recruited APS and PD patients from movement disorder clinics across the UK from September 2015 to December 2018, and will follow up patients over 5 years. APS patients were stratified into PSP-Richardson syndrome, PSP-subcortical (including PSP-parkinsonism and PSP-progressive gait freezing cases), PSP-cortical (including PSP-frontal and PSP/CBS overlap cases), MSA-parkinsonism, MSA-cerebellar, CBS-Alzheimer’s and CBS-non-Alzheimer’s groups. MAIN OUTCOME MEASURES: Baseline group comparisons were conducted using: 1) Clinical trajectory; 2) Cognitive screening scales; 3) Serum neurofilament light chain (NF-L); 4) TRIM11, ApoE and MAPT genotypes; 5) Volumetric MRI. RESULTS: 222 APS cases (101 PSP, 55 MSA, 40 CBS and 26 indeterminate) were recruited (58% male; mean age at recruitment, 68.3 years). Age-matched controls (n=76) and PD cases (n=1967) were also included. Concordance between the ante-mortem clinical diagnosis and pathological diagnosis was achieved in 12/13 (92%) of PSP and CBS cases coming to post-mortem. Applying the MDS PSP diagnostic criteria almost doubled the number of patients diagnosed with PSP. 49/101 (49%) of reclassified PSP patients did not have classical PSP-Richardson syndrome. PSP-subcortical patients had a longer diagnostic latency and a more benign clinical trajectory than PSP-Richardson syndrome and PSP-cortical (p<0.05). PSP-subcortical was distinguished from PSP-cortical and PSP-Richardson syndrome by cortical volumetric MRI measures (AUC 0.84-0.89), cognitive profile (AUC 0.80-0.83), serum NF-L (AUC 0.75-0.83) and TRIM11 rs564309 genotype. Midbrain atrophy was a common feature of all PSP subtypes. 8/17 (47%) of CBS patients with CSF analysis were identified as having CBS-Alzheimer’s. CBS-Alzheimer’s patients had a longer diagnostic latency, relatively benign clinical trajectory, greater cognitive impairment and higher APOE-ε4 allele frequency than CBS-non-Alzheimer’s (p<0.05, AUC 0.80-0.87). Serum NF-L levels distinguished PD from PSP and CBS (p<0.05, AUC 0.80). CONCLUSIONS AND RELEVANCE: Clinical, therapeutic and epidemiological studies focusing on PSP-Richardson syndrome are likely to miss a large number of patients with underlying PSP-tau pathology. CSF analysis defines a distinct CBS-Alzheimer’s subgroup. PSP and CBS subtypes have distinct characteristics that may enhance their early diagnosis

    “I have no clue what I drunk last night” Using Smartphone technology to compare in-vivo and retrospective self-reports of alcohol consumption.

    Get PDF
    This research compared real-time measurements of alcohol consumption with retrospective accounts of alcohol consumption to examine possible discrepancies between, and contextual influences on, the different accounts.Building on previous investigations, a specifically designed Smartphone technology was utilized to measure alcohol consumption and contextual influences in de facto real-time. Real-time data (a total of 10,560 data points relating to type and number of drinks and current social / environmental context) were compared with daily and weekly retrospective accounts of alcohol consumption.Participants reported consuming more alcoholic drinks during real-time assessment than retrospectively. For daily accounts a higher number of drinks consumed in real-time was related to a higher discrepancy between real-time and retrospective accounts. This effect was found across all drink types but was not shaped by social and environmental contexts. Higher in-vivo alcohol consumption appeared to be related to a higher discrepancy in retrospectively reported weekly consumption for alcohol beverage types other than wine. When including contextual factors into the statistical models, being with two or more friends (as opposed to being alone) decreased the discrepancy between real-time and retrospective reports, whilst being in the pub (relative to being at home) was associated with greater discrepancies.Overall, retrospective accounts may underestimate the amount of actual, real-time alcohol consumed. Increased consumption may also exacerbate differences between real-time and retrospective accounts. Nonetheless, this is not a global effect as environmental and social contexts interact with the type of alcohol consumed and the time frame given for reporting (weekly vs. daily retrospective). A degree of caution therefore appears warranted with regards to the use of retrospective self-report methods of recording alcohol consumption. Whilst real-time sampling is unlikely to be completely error free, it may be better able to account for social and environmental influences on self-reported consumption

    Tetraploid Wheat Landraces in the Mediterranean Basin: Taxonomy, Evolution and Genetic Diversity

    Get PDF
    The geographic distribution of genetic diversity and the population structure of tetraploid wheat landraces in the Mediterranean basin has received relatively little attention. This is complicated by the lack of consensus concerning the taxonomy of tetraploid wheats and by unresolved questions regarding the domestication and spread of naked wheats. These knowledge gaps hinder crop diversity conservation efforts and plant breeding programmes. We investigated genetic diversity and population structure in tetraploid wheats (wild emmer, emmer, rivet and durum) using nuclear and chloroplast simple sequence repeats, functional variations and insertion site-based polymorphisms. Emmer and wild emmer constitute a genetically distinct population from durum and rivet, the latter seeming to share a common gene pool. Our population structure and genetic diversity data suggest a dynamic history of introduction and extinction of genotypes in the Mediterranean fields

    Snapshot of the Eukaryotic Gene Expression in Muskoxen Rumen—A Metatranscriptomic Approach

    Get PDF
    BACKGROUND: Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus), with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA) was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6), GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. CONCLUSIONS/SIGNIFICANCE: The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes

    Conductive Cellulose Composites with Low Percolation Threshold for 3D Printed Electronics

    Get PDF
    We are reporting a 3D printable composite paste having strong thixotropic rheology. The composite has been designed and investigated with highly conductive silver nanowires. The optimized electrical percolation threshold from both simulation and experiment is shown from 0.7&thinsp;vol. % of silver nanowires which is significantly lower than other composites using conductive nano-materials. Reliable conductivity of 1.19&thinsp;×&thinsp;102&thinsp;S/cm has been achieved from the demonstrated 3D printable composite with 1.9&thinsp;vol. % loading of silver nanowires. Utilizing the high conductivity of the printable composites, 3D printing of designed battery electrode pastes is demonstrated. Rheology study shows superior printability of the electrode pastes aided by the cellulose\u27s strong thixotropic rheology. The designed anode, electrolyte, and cathode pastes are sequentially printed to form a three-layered lithium battery for the demonstration of a charging profile. This study opens opportunities of 3D printable conductive materials to create printed electronics with the next generation additive manufacturing process
    corecore