230 research outputs found

    Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games

    Get PDF
    Biodiversity is essential to the viability of ecological systems. Species diversity in ecosystems is promoted by cyclic, non-hierarchical interactions among competing populations. Such non-transitive relations lead to an evolution with central features represented by the `rock-paper-scissors' game, where rock crushes scissors, scissors cut paper, and paper wraps rock. In combination with spatial dispersal of static populations, this type of competition results in the stable coexistence of all species and the long-term maintenance of biodiversity. However, population mobility is a central feature of real ecosystems: animals migrate, bacteria run and tumble. Here, we observe a critical influence of mobility on species diversity. When mobility exceeds a certain value, biodiversity is jeopardized and lost. In contrast, below this critical threshold all subpopulations coexist and an entanglement of travelling spiral waves forms in the course of temporal evolution. We establish that this phenomenon is robust, it does not depend on the details of cyclic competition or spatial environment. These findings have important implications for maintenance and evolution of ecological systems and are relevant for the formation and propagation of patterns in excitable media, such as chemical kinetics or epidemic outbreaks.Comment: Final submitted version; the printed version can be found at http://dx.doi.org/10.1038/nature06095 Supplementary movies are available at http://www.theorie.physik.uni-muenchen.de/lsfrey/images_content/movie1.AVI and http://www.theorie.physik.uni-muenchen.de/lsfrey/images_content/movie2.AV

    Methods to estimate aboveground wood productivity from long-term forest inventory plots

    Get PDF
    Forest inventory plots are widely used to estimate biomass carbon storage and its change over time. While there has been much debate and exploration of the analytical methods for calculating biomass, the methods used to determine rates of wood production have not been evaluated to the same degree. This affects assessment of ecosystem fluxes and may have wider implications if inventory data are used to parameterise biospheric models, or scaled to large areas in assessments of carbon sequestration. Here we use a dataset of 35 long-term Amazonian forest inventory plots to test different methods of calculating wood production rates. These address potential biases associated with three issues that routinely impact the interpretation of tree measurement data: (1) changes in the point of measurement (POM) of stem diameter as trees grow over time; (2) unequal length of time between censuses; and (3) the treatment of trees that pass the minimum diameter threshold (“recruits”). We derive corrections that control for changing POM height, that account for the unobserved growth of trees that die within census intervals, and that explore different assumptions regarding the growth of recruits during the previous census interval. For our dataset we find that annual aboveground coarse wood production (AGWP; in Mg ha−1 year−1 of dry matter) is underestimated on average by 9.2% if corrections are not made to control for changes in POM height. Failure to control for the length of sampling intervals results in a mean underestimation of 2.7% in annual AGWP in our plots for a mean interval length of 3.6 years. Different methods for treating recruits result in mean differences of up to 8.1% in AGWP. In general, the greater the length of time a plot is sampled for and the greater the time elapsed between censuses, the greater the tendency to underestimate wood production. We recommend that POM changes, census interval length, and the contribution of recruits should all be accounted for when estimating productivity rates, and suggest methods for doing this.European UnionUK Natural Environment Research CouncilGordon and Betty Moore FoundationCASE sponsorship from UNEP-WCMCRoyal Society University Research FellowshipERC Advanced Grant “Tropical Forests in the Changing Earth System”Royal Society Wolfson Research Merit Awar

    Developing a digital intervention for cancer survivors: an evidence-, theory- and person-based approach

    Get PDF
    This paper illustrates a rigorous approach to developing digital interventions using an evidence-, theory- and person-based approach. Intervention planning included a rapid scoping review which identified cancer survivors’ needs, including barriers and facilitators to intervention success. Review evidence (N=49 papers) informed the intervention’s Guiding Principles, theory-based behavioural analysis and logic model. The intervention was optimised based on feedback on a prototype intervention through interviews (N=96) with cancer survivors and focus groups with NHS staff and cancer charity workers (N=31). Interviews with cancer survivors highlighted barriers to engagement, such as concerns about physical activity worsening fatigue. Focus groups highlighted concerns about support appointment length and how to support distressed participants. Feedback informed intervention modifications, to maximise acceptability, feasibility and likelihood of behaviour change. Our systematic method for understanding user views enabled us to anticipate and address important barriers to engagement. This methodology may be useful to others developing digital interventions

    Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida)

    Get PDF
    Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of ‘taxonomics’. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from highthroughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research

    Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions

    Get PDF
    BACKGROUND: Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. RESULTS: The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. CONCLUSIONS: Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale ecosystem service. We suggest that better monitoring and reporting of the carbon fluxes within mature forests, and understanding the drivers of changes in their balance, must become national, as well as international, priorities

    Tree height integrated into pantropical forest biomass estimates

    Get PDF
    Copyright © 2012 European Geosciences Union. This is the published version available at http://www.biogeosciences.net/9/3381/2012/bg-9-3381-2012.htmlAboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (≤40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha−1 (range 6.6 to 112.4) to 8.0 Mg ha−1 (−2.5 to 23.0). For all plots, aboveground live biomass was −52.2 Mg ha−1 (−82.0 to −20.3 bootstrapped 95% CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total biomass per hectare is greatest in Australia, the Guiana Shield, Asia, central and east Africa, and lowest in east-central Amazonia, W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if tropical forests span 1668 million km2 and store 285 Pg C (estimate including H), then applying our regional relationships implies that carbon storage is overestimated by 35 Pg C (31–39 bootstrapped 95% CI) if H is ignored, assuming that the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions due to deforestation

    School Effects on the Wellbeing of Children and Adolescents

    Get PDF
    Well-being is a multidimensional construct, with psychological, physical and social components. As theoretical basis to help understand this concept and how it relates to school, we propose the Self-Determination Theory, which contends that self-determined motivation and personality integration, growth and well-being are dependent on a healthy balance of three innate psychological needs of autonomy, relatedness and competence. Thus, current indicators involve school effects on children’s well-being, in many diverse modalities which have been explored. Some are described in this chapter, mainly: the importance of peer relationships; the benefits of friendship; the effects of schools in conjunction with some forms of family influence; the school climate in terms of safety and physical ecology; the relevance of the teacher input; the school goal structure and the implementation of cooperative learning. All these parameters have an influence in promoting optimal functioning among children and increasing their well-being by meeting the above mentioned needs. The empirical support for the importance of schools indicates significant small effects, which often translate into important real-life effects as it is admitted at present. The conclusion is that schools do make a difference in children’s peer relationships and well-being

    Phylogenetic Relationships of Tribes Within Harpalinae (Coleoptera: Carabidae) as Inferred from 28S Ribosomal DNA and the Wingless Gene

    Get PDF
    Harpalinae is a large, monophyletic subfamily of carabid ground beetles containing more than 19,000 species in approximately 40 tribes. The higher level phylogenetic relationships within harpalines were investigated based on nucleotide data from two nuclear genes, wingless and 28S rDNA. Phylogenetic analyses of combined data indicate that many harpaline tribes are monophyletic, however the reconstructed trees showed little support for deeper nodes. In addition, our results suggest that the Lebiomorph Assemblage (tribes Lebiini, Cyclosomini, Graphipterini, Perigonini, Odacanthini, Lachnophorini, Pentagonicini, Catapiesini and Calophaenini), which is united by a morphological synapomorphy, is not monophyletic, and the tribe Lebiini is paraphyletic with respect to members of Cyclosomini. Two unexpected clades of tribes were supported: the Zuphiitae, comprised of Anthiini, Zuphiini, Helluonini, Dryptini, Galeritini, and Physocrotaphini; and a clade comprised of Orthogoniini, Pseudomorphini, and Graphipterini. The data presented in this study represent a dense sample of taxa to examine the molecular phylogeny of Harpalinae and provide a useful framework to examine the origin and evolution of morphological and ecological diversity in this group

    Sources and Sinks of Diversification and Conservation Priorities for the Mexican Tropical Dry Forest

    Get PDF
    Elucidating the geographical history of diversification is critical for inferring where future diversification may occur and thus could be a valuable aid in determining conservation priorities. However, it has been difficult to recognize areas with a higher likelihood of promoting diversification. We reconstructed centres of origin of lineages and identified areas in the Mexican tropical dry forest that have been important centres of diversification (sources) and areas where species are maintained but where diversification is less likely to occur (diversity sinks). We used a molecular phylogeny of the genus Bursera, a dominant member of the forest, along with information on current species distributions. Results indicate that vast areas of the forest have historically functioned as diversity sinks, generating few or no extant Bursera lineages. Only a few areas have functioned as major engines of diversification. Long-term preservation of biodiversity may be promoted by incorporation of such knowledge in decision-making

    Analysis of the Diversity of Megachilidae Bees on the Northern Subplateau of the Iberian Peninsula

    Get PDF
    In the western Mediterranean, 772 species of bees in the family Megachilidae have been reported. Special emphasis has been placed on the Iberian Peninsula, where to date 218 species are known. However, few intensive studies providing information about communities of Megachilidae have been carried out. Two earlier works cite 70 species; almost one third of those known on the Peninsula. With an aim of gaining insight into the structure of the communities of Megachilidae and the factors influencing them, an analysis was made of the alpha and beta diversity of different localities in the northern subplateau. Malaise traps (black and white) were used, and 559 specimens belonging to 55 species were identified of which most exhibited a nest-holder-type nesting habit. Abundance and richness were higher for white traps, although a considerable degree of complementarity was observed with the black traps. In the study zone, diversity can be considered medium-high with a phylogenetic diversity corresponding to stable populations. Regarding the composition of the Megachilidae communities, the influence of the landscape structure, of the microhabitat, and of the colour of the trap used to collect the specimens was detected. The following are recommended: (1) the use of both black and white traps, since they show high complementarity and offer different information about community structure, (2) homogenization of the samples in comparisons among communities, owing to the influence of the color of the trap, which masks the importance of ecological factors in community structuring, and (3) the collection of samples from at least two years previous, in view of the elevated “replacement” of species observed with species richness estimators
    corecore