124 research outputs found

    Targeting GATA4 for cardiac repair

    Get PDF
    Various strategies have been applied to replace the loss of cardiomyocytes in order to restore reduced cardiac function and prevent the progression of heart disease. Intensive research efforts in the field of cellular reprogramming and cell transplantation may eventually lead to efficient in vivo applications for the treatment of cardiac injuries, representing a novel treatment strategy for regenerative medicine. Modulation of cardiac transcription factor (TF) networks by chemical entities represents another viable option for therapeutic interventions. Comprehensive screening projects have revealed a number of molecular entities acting on molecular pathways highly critical for cellular lineage commitment and differentiation, including compounds targeting Wnt- and transforming growth factor beta (TGF beta)-signaling. Furthermore, previous studies have demonstrated that GATA4 and NKX2-5 are essential TFs in gene regulation of cardiac development and hypertrophy. For example, both of these TFs are required to fully activate mechanical stretch-responsive genes such as atrial natriuretic peptide and brain natriuretic peptide (BNP). We have previously reported that the compound 3i-1000 efficiently inhibited the synergy of the GATA4-NKX2-5 interaction. Cellular effects of 3i-1000 have been further characterized in a number of confirmatory in vitro bioassays, including rat cardiac myocytes and animal models of ischemic injury and angiotensin II-induced pressure overload, suggesting the potential for small molecule-induced cardioprotection.Peer reviewe

    Discovery of Small Molecules Targeting the Synergy of Cardiac Transcription Factors GATA4 and NKX2-5

    Get PDF
    Transcription factors are pivotal regulators of gene transcription, and many diseases are associated with the deregulation of transcriptional networks. In the heart, the transcription factors GATA4 and NKX2-5 are required for cardiogenesis. GATA4 and NKX2-5 interact physically, and the activation of GATA4, in cooperation with NKX2-5, is essential for stretch-induced cardiomyocyte hypertrophy. Here, we report the identification of four small molecule families that either inhibit or enhance the GATA4-NKX2-5 transcriptional synergy. A fragment-based screening, reporter gene assay, and pharmacophore search were utilized for the small molecule screening, identification, and optimization. The compounds modulated the hypertrophic agonist-induced cardiac gene expression. The most potent hit compound, N-[4-(diethylamino)phenyl]-5-methyl-3-phenylisoxazole-4-carboxamide (3, IC50 = 3 mu M), exhibited no activity on the protein kinases involved in the regulation of GATA4 phosphorylation. The identified and chemically and biologically characterized active compound, and its derivatives may provide a novel class of small molecules for modulating heart regeneration.Peer reviewe

    Olfactory and trigeminal interaction of menthol and nicotine in humans

    Get PDF
    The purpose of the study was to investigate the interactions between two stimuli—menthol and nicotine—both of which activate the olfactory and the trigeminal system. More specifically, we wanted to know whether menthol at different concentrations modulates the perception of burning and stinging pain induced by nicotine stimuli in the human nose. The study followed an eightfold randomized, double-blind, cross-over design including 20 participants. Thirty phasic nicotine stimuli at one of the two concentrations (99 and 134 ng/mL) were applied during the entire experiment every 1.5 min for 1 s; tonic menthol stimulation at one of the three concentrations (0.8, 1.5 and 3.4 μg/mL) or no-menthol (placebo control conditions) was introduced after the 15th nicotine stimulus. The perceived intensities of nicotine’s burning and stinging pain sensations, as well as perceived intensities of menthol’s odor, cooling and pain sensations, were estimated using visual analog scales. Recorded estimates of stinging and burning sensations induced by nicotine initially decreased (first half of the experiment) probably due to adaptation/habituation. Tonic menthol stimulation did not change steady-state nicotine pain intensity estimates, neither for burning nor for stinging pain. Menthol-induced odor and cooling sensations were concentration dependent when combined with low-intensity nicotine stimuli. Surprisingly, this dose dependency was eliminated when combining menthol stimuli with high-intensity nicotine stimuli. There was no such nicotine effect on menthol’s pain sensation. In summary, we detected interactions caused by nicotine on menthol perception for odor and cooling but no effect was elicited by menthol on nicotine pain sensation

    Nasal Chemosensory-Stimulation Evoked Activity Patterns in the Rat Trigeminal Ganglion Visualized by In Vivo Voltage-Sensitive Dye Imaging

    Get PDF
    Mammalian nasal chemosensation is predominantly mediated by two independent neuronal pathways, the olfactory and the trigeminal system. Within the early olfactory system, spatiotemporal responses of the olfactory bulb to various odorants have been mapped in great detail. In contrast, far less is known about the representation of volatile chemical stimuli at an early stage in the trigeminal system, the trigeminal ganglion (TG), which contains neurons directly projecting to the nasal cavity. We have established an in vivo preparation that allows high-resolution imaging of neuronal population activity from a large region of the rat TG using voltage-sensitive dyes (VSDs). Application of different chemical stimuli to the nasal cavity elicited distinct, stimulus-category specific, spatiotemporal activation patterns that comprised activated as well as suppressed areas. Thus, our results provide the first direct insights into the spatial representation of nasal chemosensory information within the trigeminal ganglion imaged at high temporal resolution

    The (n, gamma) campaigns at EXILL

    Get PDF
    At the PF1B cold neutron beam line at the Institut Laue Langevin, the EXILL array consisting of EXOGAM, GASP and ILL-Clover detectors was used to perform (n, gamma) measurements at very high coincidence rates. About ten different reactions were measured in autumn 2012 using a highly collimated cold neutron beam. In spring 2013, the EXOGAM array was combined with 16 LaBr3(Ce) scintillators in the EXILL&FATIMA campaign for the measurement of lifetimes using the generalised centroid difference method. We report on the properties of the set-ups and present first results from both campaigns

    Evolution of deformation in neutron-rich Ba isotopes up to A=150

    Get PDF
    The occurrence of octupolar shapes in the Ba isotopic chain was recently established experimentally up to N = 90. To further extend the systematics, the evolution of shapes in the most neutron-rich members of the Z = 56 isotopic chain accessible at present, Ba-148,Ba-150, has been studied via beta decay at the ISOLDE Decay Station. This paper reports on the first measurement of the positive-and negative-parity low-spin excited states of 150Ba and presents an extension of the beta-decay scheme of Cs-148. Employing the fast timing technique, half-lives for the 2(1)(+) level in both nuclei have been determined, resulting in T-1/2 = 1.51(1) ns for Ba-148 and T-1/2 = 3.4(2) ns for Ba-150. The systematics of low-spin states, together with the experimental determination of the B(E2 : 2(+) -> 0(+)) transition probabilities, indicate an increasing collectivity in Ba148-150, towards prolate deformed shapes. The experimental data are compared to symmetry conserving configuration mixing (SCCM) calculations, confirming an evolution of increasingly quadrupole deformed shapes with a definite octupolar character.Peer reviewe

    Hypoxia-inducible factor-1alpha is a critical mediator of hypoxia induced apoptosis in cardiac H9c2 and kidney epithelial HK-2 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia inducible factor-1 (HIF-1) is a transcription factor that functions to maintain cellular homeostasis in response to hypoxia. There is evidence that HIF-1 can also trigger apoptosis, possibly when cellular responses are inadequate to meet energy demands under hypoxic conditions.</p> <p>Methods</p> <p>Cardiac derived H9c2 and renal tubular epithelial HK-2 cells expressing either the wild type oxygen regulated subunit of HIF-1 (pcDNA3-Hif-1α) or a dominant negative version that lacked both DNA binding and transactivation domains (pcDNA3-DN-Hif-1α), were maintained in culture and exposed to hypoxia. An RNA interference approach was also employed to selectively knockdown expression of Hif-1α. Apoptosis was analyzed in both H9c2 and HK-2 cells by Hoechst and TUNEL staining, caspase 3 activity assays and activation of pro-apoptotic Bcl2 family member Bax.</p> <p>Results</p> <p>Overexpression of pcDNA3-DN-Hif-1α led to a significant reduction in hypoxia -induced apoptosis (17 ± 2%, <it>P </it>< 0.01) in H9c2 cells compared to both control-transfected and wild type Hif-1α transfected cells. Moreover, selective ablation of HIF-1α protein expression by RNA interference in H9c2 cells led to 55% reduction of caspase 3 activity and 46% reduction in the number of apoptotic cells as determined by Hoechst 33258 staining, after hypoxia. Finally, upregulation of the pro-apoptotic protein, Bax, was found in H9c2 cells overexpressing full-length pcDNA3-HA-HIF-1α exposed to hypoxia. In HK-2 cells overexpression of wild-type Hif-1α led to a two-fold increase in Hif-1α levels during hypoxia. This resulted in a 3.4-fold increase in apoptotic cells and a concomitant increase in caspase 3 activity during hypoxia when compared to vector transfected control cells. HIF-1α also induced upregulation of Bax in HK-2 cells. In addition, introduction of dominant negative Hif-1α constructs in both H9c2 and HK-2 -cells led to decreased active Bax expression.</p> <p>Conclusion</p> <p>These data demonstrate that HIF-1α is an important component of the apoptotic signaling machinery in the two cell types.</p

    Low-lying octupole isovector excitation in Nd-144

    Get PDF
    International audienceThe nature of low-lying 3− levels in Nd144 was investigated in the Nd143(n,γγ) cold neutron-capture reaction. The combination of the high neutron flux from the research reactor at the Institut Laue-Langevin and the high γ-ray detection efficiency of the EXILL setup allowed the recording of γγ coincidences. From the coincidence data precise branching ratios were extracted. Furthermore, the octagonal symmetry of the setup allowed angular-distribution measurements to determine multipole-mixing ratios. Additionally, in a second measurement the ultra-high resolution spectrometer GAMS6 was employed to conduct lifetime measurements using the gamma-ray induced Doppler-shift technique (GRID). The confirmed strong M1 component in the 33−→31− decay strongly supports the assignment of the 33− level at 2779keV as low-lying isovector octupole excitation. Microscopic calculations within the quasiparticle phonon model confirm an isovector component in the wave function of the 33− level, firmly establishing this fundamental mode of nuclear excitation in near-spherical nuclei

    Dual Hypocretin Receptor Antagonism Is More Effective for Sleep Promotion than Antagonism of Either Receptor Alone

    Get PDF
    The hypocretin (orexin) system is involved in sleep/wake regulation, and antagonists of both hypocretin receptor type 1 (HCRTR1) and/or HCRTR2 are considered to be potential hypnotic medications. It is currently unclear whether blockade of either or both receptors is more effective for promoting sleep with minimal side effects. Accordingly, we compared the properties of selective HCRTR1 (SB-408124 and SB-334867) and HCRTR2 (EMPA) antagonists with that of the dual HCRTR1/R2 antagonist almorexant in the rat. All 4 antagonists bound to their respective receptors with high affinity and selectivity in vitro. Since in vivo pharmacokinetic experiments revealed poor brain penetration for SB-408124, SB-334867 was selected for subsequent in vivo studies. When injected in the mid-active phase, SB-334867 produced small increases in rapid-eye-movement (REM) and non-REM (NR) sleep. EMPA produced a significant increase in NR only at the highest dose studied. In contrast, almorexant decreased NR latency and increased both NR and REM proportionally throughout the subsequent 6 h without rebound wakefulness. The increased NR was due to a greater number of NR bouts; NR bout duration was unchanged. At the highest dose tested (100 mg/kg), almorexant fragmented sleep architecture by increasing the number of waking and REM bouts. No evidence of cataplexy was observed. HCRTR1 occupancy by almorexant declined 4–6 h post-administration while HCRTR2 occupancy was still elevated after 12 h, revealing a complex relationship between occupancy of HCRT receptors and sleep promotion. We conclude that dual HCRTR1/R2 blockade is more effective in promoting sleep than blockade of either HCRTR alone. In contrast to GABA receptor agonists which induce sleep by generalized inhibition, HCRTR antagonists seem to facilitate sleep by reducing waking “drive”
    corecore