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Targeting GATA4 for cardiac repair
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Abstract
Various strategies have been applied to replace the loss of cardiomyocytes in order

to restore reduced cardiac function and prevent the progression of heart disease.

Intensive research efforts in the field of cellular reprogramming and cell transplan-

tation may eventually lead to efficient in vivo applications for the treatment of car-

diac injuries, representing a novel treatment strategy for regenerative medicine.

Modulation of cardiac transcription factor (TF) networks by chemical entities rep-

resents another viable option for therapeutic interventions. Comprehensive screen-

ing projects have revealed a number of molecular entities acting on molecular

pathways highly critical for cellular lineage commitment and differentiation,

including compounds targeting Wnt- and transforming growth factor beta (TGFβ)-
signaling. Furthermore, previous studies have demonstrated that GATA4 and

NKX2-5 are essential TFs in gene regulation of cardiac development and hypertro-

phy. For example, both of these TFs are required to fully activate mechanical

stretch-responsive genes such as atrial natriuretic peptide and brain natriuretic pep-

tide (BNP). We have previously reported that the compound 3i-1000 efficiently

inhibited the synergy of the GATA4–NKX2-5 interaction. Cellular effects of 3i-

1000 have been further characterized in a number of confirmatory in vitro bioas-

says, including rat cardiac myocytes and animal models of ischemic injury and

angiotensin II-induced pressure overload, suggesting the potential for small

molecule-induced cardioprotection.
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1 | INTRODUCTION

A network of cardiac transcription factor (TF) controls car-
diac gene expression and has a central role in transcriptional
regulation during cardiac differentiation and development
and the adaptive pathophysiological processes in the adult
heart.1–3 Evolutionarily conserved cardiac TFs GATA bind-
ing protein 4 (GATA4), NK2 homeobox 5 (NKX2-5),
myocyte enhancer factor 2C (MEF2C), heart and neural

Abbreviations: ANP, atrial natriuretic peptide; BNP, brain natriuretic
peptide; ChIP-seq, chromatin immunoprecipitation-sequencing; CREP,
cAMP-response element binding protein; ERK, extracellular signal-
regulated kinase; ET-1, endothelin-1; GSK-3β, glycogen synthase kinase
3β; hiPSC, human-induced pluripotent stem cells; MAPK, mitogen-
activated protein kinase; NMR, nuclear magnetic resonance; PDB, protein
data bank; PE, phenylephrine; STAT-1, signal transducer and activator of
transcription-1; SUMO-1, small ubiquitin-like modifier-1; TF, transcription
factor; TGF, transforming growth factor.
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crest derivatives expressed 2 (HAND2), serum response fac-
tor (SRF), and T-box 5 (TBX5) have been shown to interact
with and orchestrate cardiac gene expression during differ-
entiation and development and are also involved in cardiac
hypertrophy in a context-dependent and dynamically evolv-
ing manner (Table 1). Increasing evidence shows that a
restricted number of regulatory TFs (e.g., GATA4, HAND2,
MEF2, NKX2-5, and TBX5) are required for the initiation
of cardiac-like gene expression and are capable of coopera-
tively reprogramming cardiac fibroblasts into functional
cardiac-like myocytes in vitro and in vivo.4–7 In particular,
the pioneer TF GATA4 has emerged as the nuclear effector
of several cardiac signaling pathways that modulate key car-
diac cascades through post-translational modifications and
protein–protein interactions.

In humans, the evolutionarily conserved GATA-family
of proteins consists of six GATA proteins (GATA1-6), all
sharing similar tertiary protein structures and high amino
acid sequence identity over their two DNA binding zinc
finger domains. Both N-terminal- and C-terminal zinc
atoms in the GATA family are tetrahedrally coordinated and
bound to four cysteine residues (Cys4) forming the protein
domains involving two β-sheets and one α-helix. The stable
N-terminal zinc finger of GATA4 is primarily responsible
for mediating physical interaction and gene repression via
binding to friend of GATA2 protein (FOG2),8 whereas the
vast majority of the synergistic heterotypic interactions of
GATA4 are physically mediated by the C-terminal zinc fin-
ger and its C-terminal extension.2 In comparison to human
and animal genomes, the GATA TF families are compara-
tively large in plant model organisms, with approximately
30 members in Arabidopsis thaliana and 64 members in
soya beans. Furthermore, a recent study in plants suggests
that two important processes during plant development,
greening and photosynthesis, as well as stomata formation,
and thus, gas exchange, are regulated by plant GATA-
factors.9,10

2 | GATA4 STRUCTURE AND
FUNCTION

The protein sequence of human GATA4 contains multiple
functional domains, including the C- and N-terminal zinc
fingers, in addition to the N-terminal and C-terminal
sequences, which have been suggested to constitute tran-
scriptional activation and nuclear localization domains,
respectively.11,12 The truncated protein structure of the C-
terminal zinc finger of GATA4 has been experimentally
resolved with nuclear magnetic resonance (NMR) by the
Northeast Structural Genomics Consortium (protein data
bank [PDB] code, 2M9W). However, the first NMR-
structures of the zinc finger domain for GATA1 (PDB,
1GAT) were published in 1993.13 Furthermore, X-ray crys-
tallographic binding analyses of other GATA-family zinc
fingers bound to DNA have provided new insights into the
DNA recognition mechanisms of GATA-dependent gene
regulation (Figure 1).14,15

The human GATA4 protein contains 442 amino acids
and includes two structurally stable zinc finger domains
located at amino acid residues 217–241 and 271–295. The
protein sequence outside of the zinc finger core domains and
C-terminal extension (residues 210–320) has no globular
structure and it remains completely disordered.16 In addition,
the C-terminal extension of the zinc finger contains the
amino acid sequence required for nuclear localization.12

Several GATA4 single point mutations identified from
humans have been shown to be linked to common develop-
mental anomalies and mortality in new-borns. For example,
the heterozygous G296S missense mutation of GATA4
results in diminished DNA binding affinity, diminished tran-
scriptional activity, and abolition of a physical interaction
between GATA4 and TBX5 that is associated with congeni-
tal heart disease.17,18 Moreover, four heterozygous missense
GATA4 mutations, P36S, H190R, S262A, and V399G, have
been linked to congenital atrial-septal defects in new-borns

TABLE 1 Summary of the
evolutionarily conserved transcription
factors expressed in the heart

Transcription
factor Size Isoforms

Structural
classification Interacting partners

GATA4 442 aa 2 Zinc finger protein NKX2-5, TBX5,
MEF2C

NKX2-5 324 aa 3 Homeobox protein GATA4, TBX5

MEF2C 473 aa 6 MADS-box superfamily GATA4, p300

TBX5 518 aa 3 T-box protein GATA4, NKX2-5

SRF 508 aa 1 MADS-box superfamily GATA4, ELK4,
myogenin

HAND2 217 aa 2 Basic helix–loop–helix
protein

GATA4, NKX2-5

FOG2 1,151 aa 3 Zinc finger protein GATA4
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and are responsible for substantial morbidity and mortality
in affected individuals.19

The GATA4 protein was originally discovered as one of
the earliest molecular markers associated with the initiation of
cardiac gene expression.20–22 In addition to the heart,
GATA4/5/6 proteins are expressed in various tissues, including
the liver, lung, gut, and gonad.12,23,24 The other GATA family
proteins, GATA1/2/3, are preferentially expressed in hemato-
poietic cells.25 Knockout studies of GATA4/5/6 proteins dur-
ing embryonic heart development in Xenopus, zebrafish, and
mice propose a functional redundancy between these TFs.
Moreover, a number of studies have demonstrated that none of
the GATA factors are absolutely required for the specification
of myocardium, suggesting a compensatory mechanism inside
the GATA family.26–28

On one hand, it appears that total control of GATA4 mRNA
levels is not a critical predictor of GATA4 activity in model sys-
tems of hypertrophy. Over the course of experiments, mRNA
levels of GATA4 remained stable in response to arginine-
8-vasopressin infusion, nephrectomy in vivo and treatment with
endothelin-1 (ET-1) in vitro,29–31 whereas exposure to phenyl-
ephrine (PE), isoproterenol or cardiomyocyte stretch in vitro
were able to increase GATA4 mRNA levels.32,33 On the other
hand, treatment with cardiotoxic anthracyclines were associated

with myocyte apoptosis and a reduction in both mRNA and
protein levels of GATA4.34 Overall, these results indicate that
activity of the myocardial GATA4 protein is preferably con-
trolled by post-transcriptional and post-translational processes.2

The GATA family of proteins has shown high variance in their
cellular protein stability and degradation rate. GATA2 protein
has a relatively short half-life (approximately 30 min) in com-
parison to GATA3 and GATA6, which have half-lives over
3 hr when studied with cycloheximide, a protein synthesis
inhibitor.35–37 However, the half-life of GATA1 and GATA4
proteins far exceeds the other members of the GATA-family,
with half-lives of greater than 6 hr.36,38,39 In general, the protein
degradation rate plays an important role in protein displacement
from the chromatin, especially in the case of related proteins,
and therefore has a major impact on the establishment of tran-
scription networks that control gene expression.39

The adult human heart has insufficient capacity to repair
or regenerate cardiac cells after injury when a significant
number of cardiomyocytes are lost. Scar formation and fail-
ure to regenerate the injured myocardium are the primary
causes of the development of heart failure, arrhythmias and
sudden death.40 Signaling pathways and regulatory mecha-
nisms that are active during embryogenesis and are involved
in heart growth and development may be used to repair the

FIGURE 1 Variable DNA-binding modes of GATA-proteins. (a) Opposite DNA-binding of C-terminal zinc fingers of GATA3 (PDB, 3DFX),
(b) adjacent DNA-binding of C-terminal zinc fingers of GATA3 (PDB, 3DFV), (c) both N- and C-terminal zinc fingers of GATA1 bound to
palindromic DNA recognition site (PDB, 3VD6), (d) both N- and C-terminal zinc fingers of GATA3 bind on different DNA molecules, thereby
bridging two independent and separate DNA fragments suggesting a mechanisms of DNA looping and long-range gene regulation. This finding was
confirmed in solution by an in-gel fluorescence resonance energy transfer analysis (PDB, 4HC7)14

70 VÄLIMÄKI AND RUSKOAHO



injured adult heart.7 The overexpression of cardiac GATA4
protein preserves cardiac function after cardiac injury by
promoting increased angiogenesis and reduced fibrosis.41–43

Moreover, genetic enhancement of GATA4 protein was able
to prevent cardiomyocyte apoptosis and drug-induced
cardiotoxicity.44 A study by Malek Mohammadi et al. dem-
onstrated that high abundance of cardiac GATA4 by adeno-
viral gene transfer at postnatal days 1–7 markedly improved
cardiac regeneration after cryoinjury and rescued the loss of
regenerative capacity. Accordingly, larger myocardial scars
were observed in cardiomyocyte-specific GATA4 knockout
mice after cryoinjury, accompanied by reduced car-
diomyocyte proliferation and reduced myocardial angiogen-
esis.45,46 In addition, molecular mechanisms of active cell
populations responsible for the regenerative capacity of
zebrafish have been linked to the expression of GATA4
within a week of cardiac injury. These results in zebrafish
suggest the primary contribution and association of
GATA4-positive cells to heart regeneration and repair.47

2.1 | GATA4 post-translational modifications

The function of GATA4 protein is modified by enzymes
through post-translational processes, where one or more func-
tional groups are covalently attached to or detached from the
protein. Experimental studies show that post-translational modi-
fications of GATA4 involve the assignment of acetyl-,
phosphoryl-, sumo-, and ubiquitin moieties.2,48–50 In cells, post-
translational modifications have an impact on several different
functions of GATA4, involving nuclear localization, DNA
binding affinity, coprotein association, and protein degradation.

The sequence of GATA4 protein conveys seven potential
phosphorylation sites that are modified by enzymes, such as
glycogen synthase kinase 3β (GSK-3β), extracellular signal-
regulated kinases (ERK), and p38 mitogen-activated protein
kinase (MAPK), extensively reviewed by Suzuki and Zhou
et al. In response to hypertrophic stimuli (e.g., ET-1, PE, isopro-
terenol and myocyte stretch), activation of the MAPK kinase
signalling cascade significantly augments GATA4 phosphory-
lation and DNA binding efficiency.51 The importance of phos-
phorylation was further evaluated by in vivo experiments with
knock-in mice carrying the homozygous GATA4-S105A muta-
tion, which demonstrated the compromised stress response of
the myocardium.52 In addition, earlier studies have shown that
GATA4 phosphorylation via the MAPK/ERK pathway at
Ser105 gives the tendency to be more resistant to cellular degra-
dation.53 In contrast, phosphorylation of the amino-terminal part
of GATA4 via activation of GSK-3β resulted in increased
export of GATA4 from the nucleus.54

Histone acetyltransferases such as p300 and cAMP-
response element binding protein (CREP) have been shown to
induce the acetylation of specific lysine residues through

physically interacting with GATA4.50,55 Analogous to phos-
phorylation, GATA4 acetylation is similarly recognized as an
imperative stimulus-triggered mechanism that regulates car-
diac hypertrophy by enhancing its DNA binding efficiency
and transcriptional activity. Mutational analysis through ala-
nine scanning by Takaya et al. identified four lysine residues
(K311, K318, K320, K322) as targets of acetylation by p300.
Mutation of all four residues blocked GATA4 acetylation and
blunted cardiac hypertrophy induced by GATA4 over-
expression, thus demonstrating the importance of GATA4
acetylation in the regulation of GATA4 transcriptional activ-
ity.55,56 A recent study identified K311 (corresponding to
K313 in the paper) as a primary target of acetyltransferases
p300/CREP, with an enhanced cellular stability of acetylated
GATA4.57 The study was carefully conducted to simulate the
effect of loss-of-function by using lysine to arginine mutations
for the optimal structural integrity of the mutated proteins.
Other studies have also reported that acetylated GATA4 is
more resistant to degradation, perhaps due to competition with
lysine ubiquitination.58 Furthermore, a pharmacological study
with trichostatin A demonstrated that acetylation of both
GATA4 and histone residues are involved in the differentia-
tion of embryonic stem cells into cardiac myocytes.59

GATA4 has been identified as a target protein for
SUMOylation by small ubiquitin-like modifier-1 (SUMO-1)
and ubiquitination by the ubiquitin-proteasome pathway.38,49

Unlike the activation of the ubiquitin-proteasome pathway lead-
ing to protein degradation, SUMOylation enhances GATA4
transcriptional activity through covalent binding of the SUMO
motif exclusively to Lys366. In the cardiac context, the presence
of protein inhibitor of activated signal transducer and activator
of transcription-1 (STAT-1) and SUMO-1 proteins triggered the
enhanced SUMOylation of GATA4 and impacted both nuclear
localization and cardiac gene activity. Active ubiquitination of
GATA4 has been demonstrated in several physiological condi-
tions, for example, hypoxia, hyperglycemia, and oxidative
stress.38,60,61 Based on these observations, it appears that the
ubiquitin-proteasome pathway is the major degradation mecha-
nism regulating the cellular turnover of GATA4 protein.

The study by Aries et al. demonstrated a specific case of
the cellular effects of truncated GATA4 protein. Activation
of caspase-1 in cardiomyocytes by doxorubicin led to
dominant-negative GATA4 protein with a reduced ability to
activate cardiac genes.62 Furthermore, it was shown that
inhibition of caspase-1 preserved transcriptional activity,
reduced GATA4 protein degradation, and reduced myocyte
cell death after doxorubicin exposure.

2.2 | GATA4 chromatin occupancy

TFs regulate gene expression through coprotein assemblies
together with basal transcriptional machinery by binding to
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specific cis-regulatory sequences in gene promoters and
enhancers. The tissue-specific TF GATA4 prefers to bind to
the DNA sequence (A/T)GATA(A/G) through its carboxy-
terminal zinc finger and is responsible for mediating site-
specific physical interaction with the DNA sequence. A
number of essential cardiac-expressed genes contain the
binding sequence for GATA in their promoter, including
atrial natriuretic peptide (ANP),63 B-type natriuretic factor
(brain natriuretic peptide [BNP]),64 α-myosin heavy chain,65

β-myosin heavy chain,66 cardiac troponin C,67 cardiac tropo-
nin I,68 and sodium-calcium exchanger.69

In the adult heart, whole-genome chromatin immuno-
precipitation-sequencing (ChIP-seq) analysis with GATA4 anti-
body identified only 1,756 GATA4-bound regions,70 whereas
bioChIP-seq in adult heart ventricles identified more than
15,000 binding sites for the high-affinity FLAG-biotin incorpo-
rated into GATA4,71 indicating a major difference in detection
sensitivity related to the antibodies used in the experiment. Dur-
ing cardiac development, a high-affinity ChIP-seq system iden-
tified over 50,000 GATA4-bound regions from the fetal heart
ventricles. However, the less sensitive GATA4 antibody-based
chromatin immunoprecipitation ChIP-seq identified 11,915
GATA4-bound regions. Overall, the ChIP-seq experiments
indicate a dynamic change of GATA4 chromatin occupancy
through normal heart development, in concert with its changing
function. In the fetal heart, GATA4-bound regions were pre-
dominantly located distal from the transcription start sites, while
in the adult heart, a significant shift of GATA4 regions to proxi-
mal locations were observed. In the adult heart, pathological
stress, such as chronic pressure overload, induced changes in
GATA4 chromatin occupancy. The main stress-induced differ-
ences of GATA4 recruitment were associated with completely
new disease enhancers that were not occupied during develop-
ment, as well as the partial reinitiation of the developmental pro-
gram through GATA4 binding to a subset of fetal GATA4
enhancers.71

Chromatin remodeling controls gene expression by modi-
fying the access of regulatory transcription machinery pro-
teins to condensed genomic DNA. This genome-wide
remodeling process occurs via two different mechanisms,
either by covalent histone modifications or by moving,
ejecting, or restructuring the nucleosomes. Since gene acti-
vation is regulated in a multifaceted manner by the interplay
of the TF network and the dynamic modifications of the
chromatin landscape, as well as by the interference of micro-
RNA (miRNAs), GATA4 chromatin occupancy alone was
not directly associated to increased cardiac gene expression
levels in fetal or adult heart. However, a number of studies
have revealed a high correlation of genome-wide enrichment
of GATA4 binding regions, particularly to acetylated histone
H3 at lysine 27 (H3K27ac), a major active transcriptional
enhancer marker, together leading to a strong combined

effect on gene activation.17,71–73 Indeed, the binding strength
of GATA4 did not correlate with the level of GATA4 target
gene transcription assessed by ChIP-seq, whereas the
increased expression of GATA4-bound genes was associated
with higher H3K27ac enrichment at GATA4-bound regions.

In human and mouse, there are approximately 2,000 TFs,
more than 100 different modifications of histone residues, and
approximately 700 miRNAs that modulate the mRNA profiles
corresponding to approximately 20,000 genes. The TF com-
plexes that are associated with GATA4 have a comparable
dependency on cofactor binding and modulation by histone
modifications, as well as on regulation by miRNAs. Therefore,
tissue-specific chromatin co-occurrence with distinct subsets of
TFs are preferred to allow a logical and systematic
initiation/repression of transcription. Distinct cardiac TFs, such
as NKX2-5, TBX5, SRF, and MEF2A, in addition to
enhancers such as p300, have been shown to localize together
with GATA4 at chromatin regions and coregulate cardiac gene
expression.74,75 Even though these TFs are expressed in multi-
ple tissues, ChIP-seq experiments provide unbiased support for
collaborative TF interactions in driving cardiac-specific gene
expression, which is especially linked to combinatorial locali-
zation and interactions between these cardiac TFs.

3 | GATA4 ASSOCIATION TO THE
CARDIAC TRANSCRIPTIONAL
NETWORK

Hereafter, we focus on GATA4 and its association with the
interdependent cardiac TF system involving NKX2-5,
MEF2C, HAND2, SRF, and TBX5, which strictly controls
the context-dependent processes of cardiomyocyte develop-
ment, maturation, and survival (Figure 2).27,45 All these TFs
regulate each other's expression and DNA binding prefer-
ences in a combinatorial manner, resulting in a buffering
capacity of the network.76 Perturbation of the core TF net-
work with chemical treatment or genetic alteration may lead
to various cardiac phenotypes in mice, and mutations in
humans have been associated with congenital heart defects.
Although TFs are the main driving force for the precise con-
trol of gene expression, coregulators, epigenetic marks, and
post-transcriptional regulators, such as microRNAs, fine-
tune their expression and functional activity.76,77 The combi-
natorial nature of TFs is facilitated by protein flexibility,
which maximizes the specificity of promiscuous coprotein
interactions. Due to combinatorial actions, a relatively small
subset of TFs is able to control the transcriptional program
of an entire cell.78–80

Heterotypic pair-wise interactions of GATA4 have revealed
that cofactors critical for direct cardiac reprogramming, such as
MEF2C, HAND2, and TBX5, tend to synergistically activate
the GATA cis-regulatory element.17,18,81,82 The dominant
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expression of either NKX2-5 or SRF consequently lead to
activation of the hypertrophic gene program, where synergy
is driven through their corresponding DNA binding sites by
the activation of a GATA4-coprotein complex.83,84 Diverse
preprogrammed gene activation patterns are therefore conse-
quences of operative selectivity arising from molecular con-
formations of the core factors at the promoter (Figure 3).
Moreover, selected heterotypic GATA4 protein ensembles
are capable of cooperating in cardiomyocytes through a sin-
gle recognition DNA element, excluding the GATA4–TBX5
interaction, which requires binding elements for both TFs.
Thus, understanding protein assembly and consequent gene
regulation via an inside out approach, starting from pair-wise

heterotypic interactions as a core for more complex protein
ensembles may further clarify the role of single TFs in gene
regulation.

4 | GATA4-TARGETED SMALL
MOLECULE INTERVENTIONS

There is currently only one report that presents research of
direct GATA4-targeted small molecule compounds. A study
by El-Hachem and Nemer utilized the integration of in silico
and in vitro cell-based screening assays to uncover charged
small molecules that selectively and efficiently inhibited the
DNA binding of GATA4.85 Two corresponding regions of the
C-terminal zinc finger domain of the NMR structure of chicken
GATA1 and the crystal structure of murine GATA3 were uti-
lized as highly conserved structural templates for the virtual
screening campaign. A study by El-Hachem and Nemer identi-
fied four compounds that inhibit GATA4 binding to DNA and
in vitro blocked the activation of GATA4 downstream target
genes and enhanced a mouse model of myoblast differentiation
into myotubes. However, the use of negatively charged study
compounds, which all contained zinc chelating moieties, were
restricted entirely to in vitro assays due to the compounds'
unoptimized and insufficient absorption, distribution, metabo-
lism, and excretion (ADME) properties. The study was not able
to confirm direct ligand binding to GATA4 or exclude possible
ligand chelation to the zinc ion. Furthermore, since reduced
protein and activity levels of GATA4 are linked to several
adverse effects in cardiomyocyte differentiation, cardiomyocyte
proliferation, cardiomyocyte apoptosis, and drug-induced
cardiotoxicity, application of DNA inhibitors of GATA4 pro-
tein may include potential risks for unfavorable cardiac effects
in vivo.44,46,52,86–88

4.1 | The GATA4–NKX2-5 interaction in
cardiac development and hypertrophy

NK-2 TF-related, locus 5 (NKX2-5 or Csx) is a cardiac spe-
cific homeobox gene family protein with a single helix-turn-
helix motif responsible for binding to the specific consensus
DNA sequence T(C/T)AAGTG. Evolutionarily conserved
NKX2-5 is a critical GATA4 cofactor and has an essential
role in cardiac gene expression and normal heart
development.89–91 To date, approximately 50 human muta-
tions of NKX2-5 have been identified that are associated
with congenital heart defects responsible for the develop-
ment of atrial septal defects, tetralogy of Fallot, and ventric-
ular septal defects.92 Structural evaluations demonstrate that
NKX2-5 cooperates with cardiac TFs such as GATA4 and
TBX5 through the homeodomain and its C-terminal exten-
sion and synergistically promote cardiac gene expression,
differentiation, and morphogenesis.93–96 More specifically,

FIGURE 2 Cardiac protein association map derived from the
STRING database illustrates the network of interactions for selected
TFs; GATA4, NKX2-5, MEF2C, HAND2, SRF, and TBX5. The
associations are intended to be specific and meaningful, and thus,
proteins jointly contribute to the shared functions. Interaction map
color codes; blue indicates direct binding, purple indicates post-
translational modifications, yellow indicates transcriptional regulation,
black indicates reaction, green arrow indicates activation and grey
indicates the protein's indirect contribution to shared functions.
Abbreviations: BMP4, bone morphogenetic protein 4 and HOPX, HOP
homeodomain; FOS, FBJ murine osteosarcoma viral oncogene
homolog; GATA4, GATA binding protein 4; HAND2, heart and neural
crest derivatives expressed 2; MAPK7, mitogen-activated protein
kinase 7; MAPK14, mitogen-activated protein kinase 14; MEF2C,
myocyte enhancer factor 2C; MKL1, megakaryoblastic leukemia 1;
MYOCD, myocardin; MYOD1, myogenic differentiation 1; MYOG,
myogenin; NKX2-5, NK2 homeobox 5; SRF, serum response factor;
TBX5, T-box 5; ZFPM2, zinc finger protein, multitype 2 (also known
as FOG2)
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mutational studies of NKX2-5 have revealed the importance
of residue Lys193 for the interaction with GATA4.97

Together GATA4 and NKX2-5 directly interact and syner-
gistically activate several cardiac genes including those
encoding ANP and BNP.2,93,98 As the precise balance of the
GATA4–NKX2-5 interaction is important for cardiac gene
expression and mechanical stretch-induced cardiomyocyte
hypertrophy,32 the functional modulation of their interac-
tions could present a novel approach for cardiac repair in
pathophysiological conditions.

Structural and functional data of key cardiac TF com-
plexes are of major importance to enhance the understanding
of molecular mechanisms and TF functions. Our previous
study with GATA4–NKX2-5 proteins showed that several
single point mutations of GATA4 are capable of interfering or
activating the GATA4–NKX2-5 interaction,99 indicating that
this PPI can be targeted by direct inhibition, activation or
allosteric modulation. We established homology models of
GATA4 and NKX2-5 and evaluated the point mutations hav-
ing critical effects on the GATA4–NKX2-5 interaction.
Preceding studies had shown that the second zinc finger and a
C-terminal extension were required for physical contact with
NKX2-5, and therefore, we mainly focused on these structur-
ally stable regions.93,97 Furthermore, the point mutations were

selected to evenly cover the surface of the C-terminal zinc fin-
ger of GATA4, excluding the amino acids needed for DNA
binding. In total, 13 C-terminal zinc finger point mutations
(R264A, S269C, A271V, N272D, N272S, Q274H, S269C
+ Q274H, R283A, R283Q, E288G, E288K, M298Y,
K299A) and four C-terminal extension mutations (R319C,
R319S, P321C, S327A) of GATA4 protein were generated
together with two mutations produced in the N-terminal zinc
finger (V217Y, H234S). Since all mutations were located out-
side the antibody recognition site, western blots quantified the
mutant protein levels produced in mammalian COS-1 cells.
The GATA4–NKX2-5 interaction was assessed via
coimmunoprecipitation with N-terminal FLAG-NKX2-5 and
analyzed by western blots using GATA4 and NKX2-5 anti-
bodies.99 Moreover, the DNA binding capacity of GATA4
mutations was evaluated. The results identify specific residues
R264, N272, Q274, R283, M298, K299, and R319 within the
C-terminal zinc finger domain of GATA4 and its C-terminal
extension that were involved in physical and functional inter-
action with NKX2-5. Integration of the experimental data
with computational modeling suggests that the topology of
the GATA4–NKX2-5 interaction is reminiscent of that
observed between the DNA binding domains of nuclear
receptors. Nuclear receptors have two zinc fingers packed

FIGURE 3 Cardiac transcriptional activity is regulated by interplay of the GATA4 transcription factor with several other TFs and post-
translational modifications. The vast majority of the protein associations of GATA4 are mediated by the C-terminal zinc finger, while the N-terminal
zinc finger is responsible for interactions with the friend of GATA2 (FOG2). Cardiac specific heterotypic interactions and DNA occupation
preferences for pair-wise GATA4 ensembles are categorized based on experimental measurements of the protein and DNA binding modes. Specific
context-dependent GATA4 protein subconsortiums regulate both the commitment of stem cells toward the cardiac fate and hypertrophic gene
expression in mature cardiac cells. Abbreviations: Acet., acetylation; GATA4, GATA binding protein 4; HAND2, heart and neural crest derivatives
expressed 2; MEF2C, myocyte enhancer factor 2C; NKE, NK2 element; NKX2-5, NK2 homeobox 5; Phos., phosphorylation; PTM, post-
translational modification; SRE, serum response element; SRF, serum response factor; Sumo/Ubi, sumoylation/ubiquitination; TBX5, T-box 5
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together with a conserved set of residues mediating stability
of the domain. Our model predicts that the interaction
between GATA4 and NKX2-5 share a conserved architecture
with the DNA binding domain of nuclear receptors.99 Another
recent study employing molecular dynamics simulations sug-
gests an alternative protein–protein interaction model for
GATA4-NKX2-5 complex.16 Conversely, experimental stud-
ies do not find support for this theoretical observation.93,97,99

4.2 | Compounds targeted to the GATA4–
NKX2-5 interaction

Based on the structural and functional data of the GATA4–
NKX2-5 interaction, an extensive chemical screening project
was established incorporating computational and experimental
biology to uncover compounds acting on key cardiac TFs.
Targeting a protein–protein interaction with a small molecule
is challenging due to the large surface area involved in
protein–protein binding and the lack of clear binding pockets
at many protein–protein interfaces. Therefore, the discovery
approach consisted of several recurring methods, including
GATA4-NKX2-5 co-immunoprecipitation and luciferase
reporter assays specifically developed to explore chemical
agents possessing either agonistic or antagonistic effects on
GATA4–NKX2-5 transcriptional synergy.100 Fragment-based
screening, virtual screening docking and pharmacophore
methods, were accordingly employed to identify primary hit
compounds. Initial low molecular weight fragments were
extensively modified with different structural options through
chemical synthesis to improve the affinity of the molecular
scaffold. The screening project resulted in synergy inhibitory
compounds, including N-[4-(diethylamino)phenyl]-5-methyl-
3-phenylisoxazole-4-carboxamide (IC50 3 μM), and synergy
activator compound N-(4-chlorophenyl)-5-methyl-N-
(4-methyl-4,5-dihydrothiazol-2-yl)-3-phenylisoxazole-4-car-
boxamide. The structure–activity relationship of inhibitory
compounds demonstrated that ligand affinity associates to the
two heavy atom linkers and hydrogen acceptors next to the
five-member ring, while the agonistic effect was achieved by
introducing a substituted five-member ring into the amide
bond. The most potent inhibitory and activator compounds
were tested in various hypertrophy assays. In cardiomyocyte
cultures, the compounds either augmented or inhibited ET-1-
and PE-induced increases in ANP and BNP gene expression,
in line with inhibition or activation of the GATA4–NKX2-5
interaction.100,101 Moreover, the inhibitory compound 3i-1000
significantly reduced mechanical stretch induced hypertrophic
growth reflected by an increase in cardiomyocyte cell size and
ANP and BNP mRNA levels in response to mechanical
stretch.

In vivo experiments showed that inhibition of GATA4–
NKX2-5 transcriptional synergy has beneficial effects on

cardiac function and gene expression in several experimental
models of myocardial ischemia and pressure overload.101,102

Echocardiographic evaluation showed significant improve-
ment in left ventricular ejection fraction and fractional short-
ening and significant attenuation of myocardial structural
changes in 3i-1000 treated mice after myocardial infarction.
Accordingly, the increase of natriuretic peptide gene expres-
sion caused by myocardial infarction and the increase in
ANP gene expression induced by myocardial ischemia
reperfusion injury were significantly decreased by 3i-1000
in mice. Furthermore, compound 3i-1000 improved cardiac
function in an experimental model of angiotensin II-
mediated hypertension in rats. Optimization of primary mod-
ulators of GATA4–NKX2-5 interactions are ongoing to
improve metabolite and safety profiles and determine the
direct protein targets of transcriptional synergy inhibition
associated with molecular mechanism(s) of action.103

It is also noteworthy to point out other challenges that
would come from attempting to disrupt GATA4 activity.
Beyond the fact that GATA4 is an essential TF in cardiac
cells, it is also expressed and functional in many other tis-
sues, prominent among these the pancreas, liver, and lung.
In addition, the targeting should be specific for GATA4 and
not interfere with activities of sister genes, particularly
GATA5 and GATA6. Therefore, strategies to limit off-
targeting of other organs and other TFs should be developed.
One opportunity to limit off-targeting of other organs would
be to develop nanotherapies targeted to the injured region of
the myocardium with the potential for spatial and temporal
control of drug delivery.102 Overall, to consider GATA4 a
bonafide drug target, the challenges of selectively targeting
GATA4 and the injured myocardium should be addressed in
more detail.

5 | CONCLUSION

Current therapies for the treatment of myocardial remodeling
are shown to attenuate symptoms and prolong lifespan by
reducing the workload of the heart, for example, angiotensin
converting enzyme inhibitors, angiotensin receptor blockers,
beta-blockers, and mineralocorticoid receptor antagonists.
However, prognosis of patients remains poor with present-
day pharmacological treatments. Cell transplantation and
virus-mediated TF delivery therapies aim to replace damaged
cells with new functional cardiomyocytes by utilizing hiPSC-
derived cardiomyocytes and stem cell transplantation, and by
reprogramming nonmuscle cells towards cardiomyocytes.
However, providing therapeutic value with cell transplants
and virus-carried TFs remains a challenge due to poor integra-
tion of new cells into the heart and the safety concerns of gene
therapy. Modulation of cardiac signaling pathways and TF
networks by chemical entities may represent another viable
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option for therapeutic intervention. Nonimmunogenic and
cost-effective small molecules possess significant advantages
of cell permeability and management of standardized indus-
trial production and quality assurance.

Our recent results (3xNKE reporter assay, ET-1 and PE-
stimulated gene expression of ANP and BNP, hypertrophic
cell surface growth in cardiomyocytes, and immunoprecipi-
tation assays) demonstrate that compounds acting on
GATA4-NKX2-5 transcriptional synergy can modulate the
hypertrophic response in cardiomyocytes in vitro. In addi-
tion, we have shown that 3i-1000, a small molecule inhibitor
of GATA4-NKX2-5 transcriptional synergy, provides cardi-
oprotective effects in vivo, indicating that modulators of
protein–protein interactions of key TFs may present novel
pharmaceuticals for cardiac remodeling and repair.
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