5,115 research outputs found

    Pulmonary stretch receptor activity during partial liquid ventilation in cats with healthy lungs

    Get PDF
    Aim: To study whether pulmonary stretch receptor (PSR) activity in mechanically ventilated young cats with healthy lungs during partial liquid ventilation (PLV) is different from that during gas ventilation (GV). Methods: In 10 young cats (4.4 +/- 0.4 months, 2.3 +/- 0.3 kg; mean B SD), PSR instantaneous impulse frequency (PSR f(imp)) was recorded from single fibres in the vagal nerve during GV and PLV with perfluorocarbon (30 ml/kg) at increasing positive inspiratory pressures (PIP; 1.2, 1.8, 2.2 and 2.7 kPa), and at a positive end-expiratory pressure of 0.5 kPa. Results: All PSRs studied during GV maintained their phasic character with increased impulse frequency during inspiration during PLV. Peak PSR fimp was lower at PIP 1.2 kPa (p < 0.05) and at PIP 2.7 kPa (p = 0.10) during PLV than during GV, giving a lower number of PSR impulses at these two settings during PLV (p < 0.05). Conclusion: The phasic character of PSR activity is similar during GV and PLV. PSR activity is not higher during PLV than during GV in cats with healthy lungs, indicating no extensive stretching of the lung during PLV. Copyright (C) 2004 S. Karger AG, Basel

    A multi-wavelength study of a double intermediate-mass protostar - from large-scale structure to collimated jets

    Full text link
    (abridged) We study a previously discovered protostellar source that is deeply embedded and drives an energetic molecular outflow. The source, UYSO1, is located close to IRAS 07029-1215 at a distance of ~1 kpc. The multi-wavelength observations resulted in the detection of a double intermediate-mass protostar at the location of UYSO1. In addition to the associated molecular outflow, with a projected size of 0.25 pc, two intersecting near-infrared jets with projected sizes of 0.4 pc and 0.2 pc were found. However, no infrared counterparts to the driving sources could be detected in sensitive near- to far-infrared observations. In interferometric millimeter observations, UYSO1 was resolved into two continuum sources with high column densities and gas masses of 3.5 Mo and 1.2 Mo, with a linear separation of 4200 AU. We report the discovery of a H2O maser toward one of the two sources. The total luminosity is roughly estimated to be ~50 Lo, shared by the two components, one of which is driving the molecular outflow that has a dynamical timescale of less than a few thousand years. The jets of the two individual components are not aligned. Submillimeter observations show that the region lacks typical hot-core chemistry. We thus find two protostellar objects, whose associated circumstellar and parent core masses are high enough to suggest that they may evolve into intermediate-mass stars. This is corroborated by their association with a very massive and energetic CO outflow, suggesting high protostellar accretion rates. The short dynamical timescale of the outflow, the pristine chemical composition of the cloud core and absence of hot core tracers, the absence of detectable radio continuum emission, and the very low protostellar luminosity argue for an extremely early evolutionary stage.Comment: 10 pages, 10 figures, accepted for publication in A&A; minor changes: typos corrected, revised argument in Section

    Quantum Depletion of an Excited Condensate

    Full text link
    We analyze greying of the dark soliton in a Bose-Einstein condensate in the limit of weak interaction between atoms. The condensate initially prepared in the excited dark soliton state is loosing atoms because of spontaneous quantum depletion. These atoms are depleted from the soliton state into single particle states with nonzero density in the notch of the soliton. As a result the image of the soliton is losing contrast. This quantum depletion mechanism is efficient even at zero temperature when a thermal cloud is absent.Comment: 4 pages; version to appear in Phys.Rev.A; change in the title plus a number of small changes in the tex

    Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long-distance migratory birds

    Get PDF
    Acknowledgements We thank all Fair Isle Bird Observatory staff and volunteers for help with data collection and acknowledge the foresight of George Waterston and Ken Williamson in instigating the observatory and census methodology. We thank all current and previous directors of Fair Isle Bird Observatory Trust for their contributions, particularly Dave Okill and Mike Wood for their stalwart support for the long-term data collection and for the current analyses. Dawn Balmer and Ian Newton provided helpful guidance on manuscript drafts. We thank Ally Phillimore and two anonymous referees for helpful comments. This study would have been impossible without the Fair Isle community's invaluable support and patience over many decades, which is very gratefully acknowledged. WTSM and JMR designed and undertook analyses, wrote the paper and contributed to data collection and compilation, MB contributed to analysis and editing, all other authors oversaw and undertook data collection and compilation and contributed to editing.Peer reviewedPostprin

    Boundary of two mixed Bose-Einstein condensates

    Full text link
    The boundary of two mixed Bose-Einstein condensates interacting repulsively was considered in the case of spatial separation at zero temperature. Analytical expressions for density distribution of condensates were obtained by solving two coupled nonlinear Gross-Pitaevskii equations in cases corresponding weak and strong separation. These expressions allow to consider excitation spectrum of a particle confined in the vicinity of the boundary as well as surface waves associated with surface tension.Comment: 6 pages, 3 figures, submitted to Phys.Rev.

    Turbulence and Steady Flows in 3D Global Stratified MHD Simulations of Accretion Disks

    Full text link
    We present full 2 Pi global 3-D stratified MHD simulations of accretion disks. We interpret our results in the context of proto-planetary disks. We investigate the turbulence driven by the magneto-rotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and a magnetic pressure two to three orders of magnitude less than the gas pressure, while outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m=5. No clear meridional circulation appears in the calculations because fluctuating radial pressure gradients lead to changes in the orbital frequency, comparable in importance to the stress gradients that drive the meridional flows in viscous models. The net mass flow rate is well-reproduced by a viscous model using the mean stress distribution taken from the MHD calculation. The strength of the mean turbulent magnetic field is inversely proportional to the radius, so the fields are approximately force-free on the largest scales. Consequently the accretion stress falls off as the inverse square of the radius.Comment: Accepted for publication in Ap

    Moving from evidence-based medicine to evidence-based health.

    Get PDF
    While evidence-based medicine (EBM) has advanced medical practice, the health care system has been inconsistent in translating EBM into improvements in health. Disparities in health and health care play out through patients' limited ability to incorporate the advances of EBM into their daily lives. Assisting patients to self-manage their chronic conditions and paying attention to unhealthy community factors could be added to EBM to create a broader paradigm of evidence-based health. A perspective of evidence-based health may encourage physicians to consider their role in upstream efforts to combat socially patterned chronic disease

    Optical linewidth of a low density Fermi-Dirac gas

    Full text link
    We study propagation of light in a Fermi-Dirac gas at zero temperature. We analytically obtain the leading density correction to the optical linewidth. This correction is a direct consequence of the quantum statistical correlations of atomic positions that modify the optical interactions between the atoms at small interatomic separations. The gas exhibits a dramatic line narrowing already at very low densities.Comment: 4 pages, 2 figure

    Low energy collective excitations in a superfluid trapped Fermi gas

    Full text link
    We study low energy collective excitations in a trapped superfluid Fermi gas, that describe slow variations of the phase of the superfluid order parameter. Well below the critical temperature the corresponding eigenfrequencies turn out to be of the order of the trap frequency, and these modes manifest themselves as the eigenmodes of the density fluctuations of the gas sample. The latter could provide an experimental evidence of the presence of the superfluid phase.Comment: 5 pages, REVTeX, referencies correcte

    Molecular Hydrogen Outflows in W51

    Get PDF
    We present the results of a deep search for the molecular hydrogen shock fronts associated with young stellar outflows in the giant molecular cloud and massive star forming region W51. A total of 14 outflows were identified, and a few of these were studied in detail with high-resolution imaging and spectroscopy.Comment: 21 pages + 14 figure
    corecore