(abridged) We study a previously discovered protostellar source that is
deeply embedded and drives an energetic molecular outflow. The source, UYSO1,
is located close to IRAS 07029-1215 at a distance of ~1 kpc. The
multi-wavelength observations resulted in the detection of a double
intermediate-mass protostar at the location of UYSO1. In addition to the
associated molecular outflow, with a projected size of 0.25 pc, two
intersecting near-infrared jets with projected sizes of 0.4 pc and 0.2 pc were
found. However, no infrared counterparts to the driving sources could be
detected in sensitive near- to far-infrared observations. In interferometric
millimeter observations, UYSO1 was resolved into two continuum sources with
high column densities and gas masses of 3.5 Mo and 1.2 Mo, with a linear
separation of 4200 AU. We report the discovery of a H2O maser toward one of the
two sources. The total luminosity is roughly estimated to be ~50 Lo, shared by
the two components, one of which is driving the molecular outflow that has a
dynamical timescale of less than a few thousand years. The jets of the two
individual components are not aligned. Submillimeter observations show that the
region lacks typical hot-core chemistry. We thus find two protostellar objects,
whose associated circumstellar and parent core masses are high enough to
suggest that they may evolve into intermediate-mass stars. This is corroborated
by their association with a very massive and energetic CO outflow, suggesting
high protostellar accretion rates. The short dynamical timescale of the
outflow, the pristine chemical composition of the cloud core and absence of hot
core tracers, the absence of detectable radio continuum emission, and the very
low protostellar luminosity argue for an extremely early evolutionary stage.Comment: 10 pages, 10 figures, accepted for publication in A&A; minor changes:
typos corrected, revised argument in Section