1,160 research outputs found

    Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation.

    Get PDF
    OBJECTIVE: Cystic fibrosis (CF), caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, continues to present diagnostic challenges. Newborn screening and an evolving understanding of CF genetics have prompted a reconsideration of the diagnosis criteria. STUDY DESIGN: To improve diagnosis and achieve standardized definitions worldwide, the CF Foundation convened a committee of 32 experts in CF diagnosis from 9 countries to develop clear and actionable consensus guidelines on the diagnosis of CF and to clarify diagnostic criteria and terminology for other disorders associated with CFTR mutations. An a priori threshold of ≥80% affirmative votes was required for acceptance of each recommendation statement. RESULTS: After reviewing relevant literature, the committee convened to review evidence and cases. Following the conference, consensus statements were developed by an executive subcommittee. The entire consensus committee voted and approved 27 of 28 statements, 7 of which needed revisions and a second round of voting. CONCLUSIONS: It is recommended that diagnoses associated with CFTR mutations in all individuals, from newborn to adult, be established by evaluation of CFTR function with a sweat chloride test. The latest mutation classifications annotated in the Clinical and Functional Translation of CFTR project (http://www.cftr2.org/index.php) should be used to aid in diagnosis. Newborns with a high immunoreactive trypsinogen level and inconclusive CFTR functional and genetic testing may be designated CFTR-related metabolic syndrome or CF screen positive, inconclusive diagnosis; these terms are now merged and equivalent, and CFTR-related metabolic syndrome/CF screen positive, inconclusive diagnosis may be used. International Statistical Classification of Diseases and Related Health Problems, 10th Revision codes for use in diagnoses associated with CFTR mutations are included

    Myofibrillogenesis regulator 1 (MR-1) is a novel biomarker and potential therapeutic target for human ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myofibrillogenesis regulator 1 (MR-1) is overexpressed in human cancer cells and plays an essential role in cancer cell growth. However, the significance of MR-1 in human ovarian cancer has not yet been explored. The aim of this study was to examine whether MR-1 is a predictor of ovarian cancer and its value as a therapeutic target in ovarian cancer patients.</p> <p>Methods</p> <p>Reverse-transcription polymerase chain reaction (PCR) and quantitative real-time PCR were used to detect MR-1 mRNA levels in tissue samples from 26 ovarian cancer patients and 25 controls with benign ovarian disease. Anti-MR-1 polyclonal antibodies were prepared, tested by ELISA and western blotting, and then used for immunohistochemical analysis of the tissue samples. Adhesion and invasion of 292T cells was also examined after transfection of a pMX-MR-1 plasmid. Knockdown of MR-1 expression was achieved after stable transfection of SKOV3 cells with a short hairpin DNA pGPU6/GFP/Neo plasmid against the MR-1 gene. In addition, SKOV3 cells were treated with paclitaxel and carboplatin, and a potential role for MR-1 as a therapeutic target was evaluated.</p> <p>Results</p> <p>MR-1 was overexpressed in ovarian cancer tissues and SKOV3 cells. 293T cells overexpressed MR-1, and cellular spread and invasion were enhanced after transfection of the pMX-MR-1 plasmid, suggesting that MR-1 is critical for ovarian cancer cell growth. Knockdown of MR-1 expression inhibited cell adhesion and invasion, and treatment with anti-cancer drugs decreased its expression in cancer cells. Taken together, these results provide the first evidence of the cellular and molecular mechanisms by which MR-1 might serve as a novel biological marker and potential therapeutic target for ovarian cancer.</p> <p>Conclusions</p> <p>MR-1 may be a biomarker for diagnosis of ovarian cancer. It may also be useful for monitoring of the effects of anti-cancer therapies. Further studies are needed to clarify whether MR-1 is an early diagnostic marker for ovarian cancer and a possible therapeutic target.</p

    Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson's disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parkinson's disease, the most common adult neurodegenerative movement disorder, demonstrates a brain-wide pathology that begins pre-clinically with alpha-synuclein aggregates ("Lewy neurites") in processes of gut enteric and vagal motor neurons. Rostral progression into substantia nigra with death of dopamine neurons produces the motor impairment phenotype that yields a clinical diagnosis. The vast majority of Parkinson's disease occurs sporadically, and current models of sporadic Parkinson's disease (sPD) can utilize directly infused or systemic neurotoxins.</p> <p>Results</p> <p>We developed a differentiation protocol for human SH-SY5Y neuroblastoma that yielded non-dividing dopaminergic neural cells with long processes that we then exposed to 50 nM rotenone, a complex I inhibitor used in Parkinson's disease models. After 21 days of rotenone, ~60% of cells died. Their processes retracted and accumulated ASYN-(+) and UB-(+) aggregates that blocked organelle transport. Mitochondrial movement velocities were reduced by 8 days of rotenone and continued to decline over time. No cytoplasmic inclusions resembling Lewy bodies were observed. Gene microarray analyses showed that the majority of genes were under-expressed. qPCR analyses of 11 mtDNA-encoded and 10 nDNA-encoded mitochondrial electron transport chain RNAs' relative expressions revealed small increases in mtDNA-encoded genes and lesser regulation of nDNA-encoded ETC genes.</p> <p>Conclusion</p> <p>Subacute rotenone treatment of differentiated SH-SY5Y neuroblastoma cells causes process retraction and partial death over several weeks, slowed mitochondrial movement in processes and appears to reproduce the Lewy neuritic changes of early Parkinson's disease pathology but does not cause Lewy body inclusions. The overall pattern of transcriptional regulation is gene under-expression with minimal regulation of ETC genes in spite of rotenone's being a complex I toxin. This rotenone-SH-SY5Y model in a differentiated human neural cell mimics changes of early Parkinson's disease and may be useful for screening therapeutics for neuroprotection in that disease stage.</p

    High-Throughput Phenotypic Characterization of Pseudomonas aeruginosa Membrane Transport Genes

    Get PDF
    The deluge of data generated by genome sequencing has led to an increasing reliance on bioinformatic predictions, since the traditional experimental approach of characterizing gene function one at a time cannot possibly keep pace with the sequence-based discovery of novel genes. We have utilized Biolog phenotype MicroArrays to identify phenotypes of gene knockout mutants in the opportunistic pathogen and versatile soil bacterium Pseudomonas aeruginosa in a relatively high-throughput fashion. Seventy-eight P. aeruginosa mutants defective in predicted sugar and amino acid membrane transporter genes were screened and clear phenotypes were identified for 27 of these. In all cases, these phenotypes were confirmed by independent growth assays on minimal media. Using qRT-PCR, we demonstrate that the expression levels of 11 of these transporter genes were induced from 4- to 90-fold by their substrates identified via phenotype analysis. Overall, the experimental data showed the bioinformatic predictions to be largely correct in 22 out of 27 cases, and led to the identification of novel transporter genes and a potentially new histamine catabolic pathway. Thus, rapid phenotype identification assays are an invaluable tool for confirming and extending bioinformatic predictions

    DC-SIGN promotes Japanese encephalitis virus transmission from dendritic cells to T cells via virological synapses.

    Get PDF
    Skin-resident dendritic cells (DCs) likely encounter incoming viruses in the first place, and their migration to lymph nodes following virus capture may promote viral replication. However, the molecular mechanisms underlying these processes remain unclear. In the present study, we found that compared to cell-free viruses, DC-bound viruses showed enhanced capture of JEV by T cells. Additionally, JEV infection was increased by co-culturing DCs and T cells. Blocking the C-type lectin receptor DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) with neutralizing antibodies or antagonists blocked JEV transmission to T cells. Live-cell imaging revealed that DCs captured and transferred JEV viral particles to T cells via virological synapses formed at DC-T cell junctions. These findings indicate that DC-SIGN plays an important role in JEV transmission from DCs to T cells and provide insight into how JEV exploits the migratory and antigen-presenting capabilities of DCs to gain access to lymph nodes for dissemination and persistence in the host

    Atrazine-induced apoptosis of splenocytes in BALB/C mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR), is the most commonly applied broad-spectrum herbicide in the world. Unintentional overspray of ATR poses an immune function health hazard. The biomolecular mechanisms responsible for ATR-induced immunotoxicity, however, are little understood. This study presents on our investigation into the apoptosis of splenocytes in mice exposed to ATR as we explore possible immunotoxic mechanisms.</p> <p>Methods</p> <p>Oral doses of ATR were administered to BALB/C mice for 21 days. The histopathology, lymphocyte apoptosis and the expression of apoptosis-related proteins from the Fas/Fas ligand (FasL) apoptotic pathway were examined from spleen samples.</p> <p>Results</p> <p>Mice administered ATR exhibited a significant decrease in spleen and thymus weight. Electron microscope histology of ultrathin sections of spleen revealed degenerative micromorphology indicative of apoptosis of splenocytes. Flow cytometry revealed that the percentage of apoptotic lymphocytes increased in a dose-dependent manner after ATR treatment. Western blots identified increased expression of Fas, FasL and active caspase-3 proteins in the treatment groups.</p> <p>Conclusions</p> <p>ATR is capable of inducing splenocytic apoptosis mediated by the Fas/FasL pathway in mice, which could be the potential mechanism underlying the immunotoxicity of ATR.</p

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb-1 to 4.8 fb-1. Higgs boson decays into oppositely-charged muon or τ lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, φ, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters mA and tan β in the mhmax scenario for mA in the range of 90GeV to 500 GeV. Copyright CERN
    corecore