571 research outputs found

    Cultivability and survey of soil mycoflora and microflora from vermicompost and undisturbed sample

    Get PDF
    Takasato Nakayama's and James Durrell's poster on new techniques in media preparation and isolation techniques necessary to fully take advantage of potential new biotechnology in soil mycoflora and microflora

    The origin of the mammalian kidney: Implications for recreating the kidney in vitro

    Get PDF
    The mammalian kidney, the metanephros, is a mesodermal organ classically regarded as arising from the intermediate mesoderm (IM). Indeed, both the ureteric bud (UB), which gives rise to the ureter and the collecting ducts, and the metanephric mesenchyme (MM), which forms the rest of the kidney, derive from the IM. Based on an understanding of the signalling molecules crucial for IM patterning and kidney morphogenesis, several studies have now generated UB or MM, or both, in vitro via the directed differentiation of human pluripotent stem cells. Although these results support the IM origin of the UB and the MM, they challenge the simplistic view of a common progenitor for these two populations, prompting a reanalysis of early patterning events within the IM. Here, we review our understanding of the origin of the UB and the MM in mouse, and discuss how this impacts on kidney regeneration strategies and furthers our understanding of human development

    Il libro di Daniele e l'apocalittica ebraica antica

    Get PDF
    1. Un genere letterario e una visione del mondo. 2. La letteratura apocalittica ebraica. 3. Le radici dell'apocalittica ebraica. 4. Apocalittica, enochismo, qumranesimo. 5. Il libro di Daniele. 6. Le principali apocalissi non canoniche

    Regenerative Medicine Therapies: lessons from the kidney

    Get PDF
    We focus on three strategies for renal regenerative medicine; administering cells to replace damaged tissue, promoting endogenous regeneration, and growing stem cell-derived organs. Mouse kidney regeneration can be promoted by stem cells injected into the circulation which do not become new kidney tissue but seem to secrete regeneration-promoting humoral factors. This argues against direct replacement but encourages developing pharmacological stimulators of endogenous regeneration. Simple 'kidneys' have been made from stem cells, but there is a large gap between what has been achieved and a useful transplantable organ. Most current work aims to stimulate endogenous regeneration or to grow new organs but much remains to be done; misplaced hype about short-term prospects of regenerative medicine helps neither researchers nor patients

    Directed differentiation of human pluripotent stem sells for the generation of high-order kidney organoids

    Get PDF
    Our understanding in the inherent properties of human pluripotent stem cells (hPSCs) have made possible the development of differentiation procedures to generate three-dimensional tissue-like cultures, so-called organoids. Here we detail a stepwise methodology to generate kidney organoids from hPSCs. This is achieved through direct differentiation of hPSCs in two-dimensional monolayer culture toward the posterior primitive streak fate, followed by induction of intermediate mesoderm-committed cells, which are further aggregated and cultured in three-dimensions to generate kidney organoids containing segmented nephron-like structures in a process that lasts 20 days. We also provide a concise description on how to assess renal commitment during the time course of kidney organoid generation. This includes the use of flow cytometry and immunocytochemistry analyses for the detection of specific renal differentiation markers

    Brain Uptake, Retention, and Efflux of Aluminum and Manganese

    Get PDF
    My colleagues and I investigated the sites and mechanisms of aluminum (Al) and manganese (Mn) distribution through the blood-brain barrier (BBB). Microdialysis was used to sample non-protein-bound Al in the extracellular fluid (ECF) of blood (plasma) and brain. Brain ECF Al appearance after intravenous Al citrate injection was too rapid to attribute to diffusion or to transferrin-receptor-mediated endocytosis, suggesting another carrier-mediated process. The brain:blood ECF Al concentration ratio was 0.15 at constant blood and brain ECF Al concentrations, suggesting carrier-mediated brain Al efflux. Pharmacological manipulations suggested the efflux carrier might be a monocarboxylate transporter (MCT). However, the lack of Al 14C-citrate uptake into rat erythrocytes suggested it is not a good substrate for isoform MCT1 or for the band 3 anion exchanger. Al 14C-citrate uptake into murine-derived brain endothelial cells appeared to be carrier mediated, Na independent, pH independent, and energy dependent. Uptake was inhibited by substrate/inhibitors of the MCT and organic anion transporter families. Determination of 26Al in rat brain at various times after intravenous 26Al suggested a prolonged brain 26Al half-life. It appears that Al transferrin and Al citrate cross the BBB by different mechanisms, that much of the Al entering brain ECF is rapidly effluxed, probably as Al citrate, but that some Al is retained for quite some time. Brain influx of the Mn2+ ion and Mn citrate, determined with the in situ brain perfusion technique, was greater than that attributable to diffusion, suggesting carrier-mediated uptake. Mn citrate uptake was approximately 3-fold greater than the Mn2+ ion, suggesting it is a primary Mn species entering the brain. After Mn2+ ion, Mn citrate, or Mn transferrin injection into the brain, brain Mn efflux was not more rapid than that predicted from diffusion. The BBB permeation of Al and Mn is mediated by carriers that may help regulate their brain concentrations

    Opportunities for organoids as new models of aging.

    Get PDF
    The biology of aging is challenging to study, particularly in humans. As a result, model organisms are used to approximate the physiological context of aging in humans. However, the best model organisms remain expensive and time-consuming to use. More importantly, they may not reflect directly on the process of aging in people. Human cell culture provides an alternative, but many functional signs of aging occur at the level of tissues rather than cells and are therefore not readily apparent in traditional cell culture models. Organoids have the potential to effectively balance between the strengths and weaknesses of traditional models of aging. They have sufficient complexity to capture relevant signs of aging at the molecular, cellular, and tissue levels, while presenting an experimentally tractable alternative to animal studies. Organoid systems have been developed to model many human tissues and diseases. Here we provide a perspective on the potential for organoids to serve as models for aging and describe how current organoid techniques could be applied to aging research

    27ヒドロキシコレステロールはエストロゲン受容体を介してヒトSLC22A12の発現を制御する

    Get PDF
    The excretion and reabsorption of uric acid both to and from urine are tightly regulated by uric acid transporters. Metabolic syndrome conditions, such as obesity, hypercholesterolemia, and insulin resistance, are believed to regulate the expression of uric acid transporters and decrease the excretion of uric acid. However, the mechanisms driving cholesterol impacts on uric acid transporters have been unknown. Here, we show that cholesterol metabolite 27-hydroxycholesterol (27HC) upregulates the uric acid reabsorption transporter URAT1 encoded by SLC22A12 via estrogen receptors (ER). Transcriptional motif analysis showed that the SLC22A12 gene promoter has more estrogen response elements (EREs) than other uric acid reabsorption transporters such as SLC22A11 and SLC22A13, and 27HC-activated SLC22A12 gene promoter via ER through EREs. Furthermore, 27HC increased SLC22A12 gene expression in human kidney organoids. Our results suggest that in hypercholesterolemic conditions, elevated levels of 27HC derived from cholesterol induce URAT1/SLC22A12 expression to increase uric acid reabsorption, and thereby, could increase serum uric acid levels.博士(医学)・甲第772号・令和3年3月15日© 2020 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License(https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes
    corecore