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Abstract 

We focus on three strategies for renal regenerative medicine; administering cells to replace damaged 

tissue, promoting endogenous regeneration, and growing stem cell-derived organs. Mouse kidney 

regeneration can be promoted by stem cells injected into the circulation which do not become new 

kidney tissue but seem to secrete regeneration-promoting humoral factors. This argues against direct 

replacement but encourages developing pharmacological stimulators of endogenous regeneration. 

Simple ‘kidneys’ have been made from stem cells, but there is a large gap between what has been 

achieved and a useful transplantable organ. Most current work aims to stimulate endogenous 

regeneration or to grow new organs but much remains to be done; misplaced hype about short-term 

prospects of regenerative medicine helps neither researchers nor patients.  

 

Introduction and scope 

In a medical context, ‘regeneration’ encompasses at least two concepts; recreation of a healthy tissue 

from a damaged tissue in vivo, and in vitro creation of a new tissue or organ from a patient’s stem or 

progenitor cells to replace a damaged or missing version. The first of these, regeneration of healthy 

tissue from injured tissue, takes place naturally in many organs: a rodent liver surgically reduced to 

one third of its original size will, for example, regenerate the missing mass within a week (Van Haele 
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et al., 2019). Indeed, generation of new healthy tissue from an undamaged side of the liver can by 

triggered surgically by deliberate induction of clotting in an already injured zone. Several hypotheses 

have been suggested to explain this effect, including availability of oxygen and nutrients from the 

increased blood flowing to the healthy area when the alternative route is closed, and responses in 

healthy tissue to injury-stimulated increase in IL6, HGF, TGF, TNF and other cytokines (the 

competing theories are reviewed by Moris et al., 2016). However it works, the effect is now used 

clinically to promote growth before resection of the damaged zone (Isfordink et al. 2017).  

 

Unfortunately, some organs do not regenerate well naturally, at least not well enough to restore 

health in common human diseases. Kidneys, for example, can recover from some insults but serious 

renal disease tends to become chronic and function is lost over time. Axons of the mammalian central 

nervous system show very little natural regenerative capacity (Curcio et al., 2018), resulting in 

permanent and serious disabilities from spinal injuries and strokes. Comparison of tissues that 

regenerate after injury with those that do not, together with experimental manipulation of pathways, 

suggests that non-regeneration may be not so much failure of surviving cells to react at all to injury, 

but rather a reaction in a direction other than regeneration, the usual other direction being toward 

fibrosis (Heindryckx & Li, 2018). Inflammation, in particular, has been identified as a potent influence 

on the balance between regeneration, local fibrosis, and spreading fibrosis and further injury (Ferrini 

et al., 2019).  

 

Increasing understanding of the regeneration-inflammation-fibrosis axis, together with improved 

techniques for manipulating stem cells, is fueling intense research into ways to promote regeneration. 

In this review, we will focus on progress in three areas (Fig 1); administration of cells to contribute 

directly to a regenerating tissue, the possibility of identifying and developing pharmacological mimics 

of regeneration-promoting humoral factors, and construction of new tissues for transplantation. 

Given limitations of space and the scale of the literature, we will use one organ, the kidney, as an 

exemplar. Most of the principles can be applied to other organs and tissues. 

 

Anatomy and organization of the kidney 

Human kidneys are excretory organs approximately 10cm high and 5cm broad and deep, located in 
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the upper lumbar region of the back, one each side of, and a little ventral to, the spinal column. 

Internally, their structure is dominated by epithelial tubes. Some of these tubes are blood vessels; 

blood enters the middle of the organ via the renal artery and then follows a tree-like system of 

arteries that deliver it to about one million fine arterioles in the outer part (cortex) of the kidney. Each 

arteriole feeds a knotted, porous capillary bed, the glomerulus, which allows water and small 

molecules to pass from the capillary, through a filter, to the inside of an epithelial tube, the nephron. 

Each nephron tube consists of a series of specialized segments; the proximal convoluted tubule is a 

long tube folded into a small volume in the cortex, and its cells are very active in both recovering 

solutes such as salts, sugars and amino acids from the filtrate, and in actively secreting organic acids 

and bases from the extracellular fluid into the filtrate. The transport systems involved can concentrate 

drug or toxin metabolites in these cells, a common cause of kidney damage. The next segment of the 

nephron is the loop of Henle, which dips down, hairpin-like, into the inner part of the kidney 

(medulla). Salt recovery from the loop makes this medulla very salty. The nephron then returns to the 

cortex where it leads, via the distal convoluted tubule, to a branch of the tree-like urine collecting 

duct system. The filtrate passes along this collecting duct system, down through the salty medulla 

again, where the saltiness is used to drive water recovery along an osmotic gradient, and eventually 

down into a urine-collecting basin, the renal pelvis, in the centre of the kidney. From there, it leaves 

the organ via the ureter. The blood components that did not pass through the glomerular filter 

passes, via another loop into the medulla and back to collect recovered water, into the renal vein and 

thence out of the organ. 

 

From even the very brief outline above, it will be clear that in the kidney, function depends critically 

on anatomical arrangement. The blood system must interact precisely with the nephron system, the 

segments of the nephron system have to follow in a correct sequence, and all systems need to have 

their components located properly in the cortex-medulla axis for osmotic gradients to work properly. 

If a damaged kidney is to be regenerated, the new tissue will have to have this very high degree of 

organization; just having metabolically active cells present in a random arrangement will not do. 

 

The goal of using stem cells to replace damaged tissue in situ 

Research in stem or progenitor cells has naturally led to the idea of applying cells to patients for the 
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purposes of regenerating missing or damaged tissue. The common assumption underlying this aim is 

that stem cells will produce differentiated progeny that will replace missing tissue. This approach is 

based on the natural role of stem or progenitor cells as a pool tapped into by the organ for 

homeostasis and endogenous repair. In the kidney, however, defining renal stem or progenitor cells 

remains a challenge (Bussolati et al., 2005; Sangrinati et al., 2006; Ronconi et al., 2009; Huling & Yoo, 

2017). Furthermore, isolating stem or progenitor cells for therapies has not been possible since kidney 

stem cells that can integrate and regenerate all types of kidney cells have been elusive so far. Mouse 

models of lineage tracing have suggested that progenitor cells of proximal tubules of the nephrons 

exist (Rinkevich et al., 2014, Kusaba et al., 2014), and they have been reported to reside in the papilla 

or near the glomeruli (Lasagni et al., 2015; Oliver et al., 2016). In principle, it might therefore be 

possible to use single renal progenitor cell types to regenerate specific parts of the kidney, or to use a 

mixture for multiple tissues.  

 

Another approach is to abandon ‘adult’ progenitor cell types, and use cells with the pluripotency 

associated with the early embryo. Protocols have been published to drive embryonic stem cells (ESCs) 

and induced pluripotent stem cells (iPSCs) to form entire renal structures in vitro, and some of these 

structures show evidence of limited renal function when transplanted to an in vivo location (Morizane 

et al., 2015; Takasoto et al., 2015, Bantounas et al., 2018). However, there is no convincing evidence 

from animal models that renal stem or progenitor cells have successfully integrated and replaced 

damaged renal tissue. Furthermore, human cell-based therapies have not been approved for clinical 

use to treat kidney disease (https://hsci.harvard.edu/faq/kidney). 

 

The goal of using stimulating endogenous regeneration via paracrine/ 

humoral factors or their mimics. 

 

A surprising by-product of work intended to build new tissue in situ directly from stem cells has been 

the discover that repair and regeneration after cell administration in the kidneys and other organs can 

be accomplished by paracrine means (Santeramo et al., 2017). In particular the use of mesenchymal 

stromal cells (MSCs) as cell therapies in rodent models has shown that the cells have repair or 

regenerative capacity even when they never reach the kidneys (Bi et al., 2007; Geng et al., 2014). 
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Recent studies have revealed that the underlying mechanism may be death of the administered cells, 

which results in stimulation of the immune system, which in turn protects from or resolves the kidney 

damage (Galleu et al., 2017, Santeramo et al., 2017). The molecular and cellular details of this process 

are still obscure, although it is becoming clear the macrophages and T-cells, as well as neutrophils, 

play a role (Santeramo et al., 2017; Geng et al., 2014). Furthermore, MSC-derived vesicles, including 

extracellular vesicles, might be involved in the communication between the administered cell 

therapies, the damaged organ tissue and immune system (Ranghino et al., 2017; Zhou et al., 2014).  

 

The observation that MSCs can promote regeneration indirectly and over large distances raises the 

hope that the critical mediators of MSC-immune-regeneration interactions may be soluble molecules 

or molecules that can be prepared in vesicles. If these natural molecules could be identified, then it 

may be possible to mimic their actions pharmacologically either by classical small-molecule drugs or 

more complex biologics. There is already a large database of drugs that modulate the immune system 

(Armstrong et al., 2019), and it may be possible that, when the target molecules for promotion of 

immune-mediated renal regeneration are identified, it will be found that relevant drugs already exist. 

 

Safety and efficacy of regenerative medicine therapies  

The injection or administration of stem or progenitor cells to treat damaged kidneys is associated with 

a range of questions which have implications for the efficacy, but importantly also the safety, of 

potential therapies: Which is the best administration route? What is the fate of the administered cells 

after administration? Will the cells home to the injured kidney, or also lodge at non-target tissue sites 

where they could form tumours?  

 

These questions raise important issues of cell-based regenerative medicine therapies: not only do the 

administered cells have to convey efficacy in repair or regeneration, they also need to be safe, and 

not pose risks of uncontrolled growth. We have recently undertaken a comprehensive preclinical 

study to address the question of safety of cell therapies, using a unique set of preclinical imaging 

modalities to track the cells in vivo (Scarfe et al., 2018). Our results have shown that different cell 

types, including human bone marrow-derived and umbilical cord-derived MSCs, never reach the 

kidneys when administered via the intravenous route since the cells are sequestered in the lungs. 
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Injection into the left ventricle of the heart allowed the administered cells to distribute widely in the 

body, including accumulation in the kidneys. However, both routes of administration led to death of 

the cells within 48 hours within the lungs or kidneys. An important observation of our study was the 

fact that after intravenous administration of umbilical cord-derived MSCs, which are already used in 

human trials, we could observe the persistence of small cell foci in about 25% of the animals that 

persisted temporarily for more than 7 days (Scarfe et al., 2018), suggesting that these cells have the 

capacity to lodge and proliferate in non-target tissue sites. If they do proliferate, this might create a 

long-term hazard. There will therefore be a need either to identify an MSC source that is effective 

therapeutically but that does not carry this risk, or to engineer the cells to have a genetic deficiency 

such that they can thrive only in the presence of a nutrient or other small, harmless molecule not 

normally found in humans. When regeneration is over, this could be withdrawn so that the 

introduced MSC cells die. Much better still would be to replace the need to introduce cells through 

the development of pharmacological mimics of their presence. 

 

 

The goal of producing replacement tissues 

An alternative to promoting the regeneration of organs and tissues in situ is to grow a new organ in 

vitro from the patient’s stem cells (perhaps with any genetic defect corrected), and then to transplant 

it back to the patient either as a full-sized organ or an embryonic-sized one that will grow in situ. For 

the kidney, progress towards this began in 2010 with a demonstration that a suspension of cells from 

a disaggregated mouse embryonic kidney rudiment (which includes stem cells) would, when re-

aggregated, go on to develop nephrons and collecting duct tubules (Unbekandt and Davies, 2010). 

This showed that the cells had the power to self-organize. It was striking, however, that while the 

micro-anatomy of the resulting organoids was realistic compared to a late foetal kidney, the macro-

anatomy of the organ was entirely absent. This type of organization, with realistic tubules arranged 

haphazardly, has become known informally in the field as a ‘bag-of-socks’. In 2015, two groups 

developed methods for differentiating human induced pluripotent stem (hiPS) cells towards renal 

fates and produced human renal organoids with a similar micro-anatomy-correct, macro-anatomy-

missing, bag-of-socks level of organization (Morizane et al., 2015; Takasato et al., 2015). These were 

originally produced manually and in small numbers, but subsequent work has developed high-
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throughput methods (e.g. Przepiorski et al., 2019). 

 

Production of hiPS-derived organoids is plagued with serious inter-experiment variability, and a 

recent analysis has now shown that most of this variability arises between, rather than within 

differentiation runs, and is associated with different proportions of cell types from each run (Phipson 

et al., 2019). These differences in outcome between differentiation runs are greater than those 

between different hiPS lines, and include generation of non-renal cell types as well as the renal ones 

intended (Wu et al., 2018). One approach to addressing variability has been to move away from the 

idea of differentiating all necessary stem cells together and letting the mix develop, towards methods 

in which different stem cell types are generated separately and combined in defined proportions 

(Taguchi  and Nishinakamura, 2017; Hariharan et al., 2019). Protocols for generating specific stem cell 

types (e.g. nephron progenitor cells, NPC, and Ureteric Bud Progenitor Cells, UBPC) have been 

developed  (e.g. Xia et al., 2013; Morizane and Bonventre, 2017; Mae et al., 2018).  Some of these cell 

types, once generated, can also be expanded in culture (Li et al., 2016; Yuri et al., 2017). 

 

Organoids made by these protocols will, if transplanted into mammalian hosts, become vascularized 

and show basic filtration of blood, and this helps them mature more than they do in vivo alone  

(Xinaris et al., 2012; van den Berg et al., 2018; Bantounas et al., 2018). But they cannot work as 

replacement organs, partly because of their size but mostly because they do not feature correct large-

scale organization (connection of nephrons to a single collecting duct tree, connected in turn to a 

ureter, and a corticomedullary axis), which is critical for normal renal function. Work in organoids 

made from renogenic stem cells, obtained from embryonic mouse kidney rudiments, has indicated 

that large-scale organization can be imposed on organoids by externally-applied symmetry-breaking 

(Fig 2). Introducing ureteric bud stem cells as an intact epithelium, rather than as scattered 

individuals, into the mix of other stem cells results in the organization of the organoid around a single 

collecting duct tree, and correct nephron orientation and cortico-medullary organization (Ganeva et 

al., 2011; Chang & Davies 2012). This idea has been transferred to ES cell-derived organoids, and 

works (Taguchi and Nishinakamura, 2017). In organoids made from ex-fetu cells, a further imposed 

break of symmetry from a local source of BMP7 can convert one nearby developing collecting duct 

into a urothelial exit tube, leaving the other tubes to make the collecting duct and the nephrons to 

arrange around that (Mills et al., 2017).  
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It must be stressed that, even if the ureter-making technique transfers to hiPS-derived organoids to 

give them large-scale organization, they will still be a long way from usable kidneys. A blood system 

will have to be introduced (the anatomy of the blood system will also have to be realistic; the relation 

of its vessels to the corticomedually organization of the kidney is critical to function). Also, the organ 

will have to be three-dimensional rather than flat (as most organoids are), and it needs to be much 

larger. The latter may be easier to achieve by grafting a small organ into the final host: human kidney 

rudiments have successfully been transplanted into rats, where they grow in size and can support the 

life of nephrectomized rats for months (Chang et al., 2015). If iPS-derived organoids could be made to 

the stage of maturation of these human organ rudiments, they might also be able to grow in hosts. 

 

Marketing, hope and hype. 

Considerable progress has been made to lay foundations for renal regenerative medicine, but this 

work has not yet been translated into a clinical discipline. We are beginning to understand the 

mechanisms whereby exogenous cells promote the repair of renal tissue, and the advances made 

towards generating functional renal tissue from stem cells have been extraordinary. However, as 

highlighted above, much more work is needed before any of these approaches could be used in 

patients. Despite this, overly positive media articles often give the impression that stem cell therapies 

for various diseases are just around the corner. An unfortunate consequence of this is that many 

patients now have unrealistic expectations of what can currently be achieved, and this has helped fuel 

a ‘for-profit’ direct-to-consumer (DTC) market for unproven ‘stem’ cell therapies. The problems 

associated with DTC marketing have been known for many years, with the risks and financial burden 

posed to patients being highlighted in a report from Caulfield’s group in 2008 (Lau et al., 2008). Since 

then, however, there has been a burgeoning growth in this industry, particularly in the US where the 

number of clinics increased from 2 to almost 600 between 2008 and 2016 (Turner and Knoepfler, 

2016). A detailed investigation by Rasko and co-workers has shown that while DTC stem cell clinics 

were initially restricted to developing economies with poor regulatory oversight, they are now 

prevalent in the US, Australia, and several EU countries including the UK, Germany and Ireland (Berger 

et al., 2016). 
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The increase in market demand for unproven stem cell therapies, despite warnings from academics 

and professional bodies, is probably due to ‘scienceploitation’, a term coined by Caulfield to describe 

the phenomenon of creating false and/or misleading information about a legitimate area of science 

(Murdoch et al., 2018). Journalists may engage in stem cell scienceploitation unintentionally due to 

lack of expert knowledge, and/or insufficient time to check the validity of stories about potential stem 

cell cures, the source of which can often be University press offices (Sumner et al., 2014). On the 

other hand, stem cell banks and clinics may use scienceploitation intentionally to boost consumer 

interest in their products and services (Murdoch et al., 2018). If unchecked, the scienceploitation of 

stem cell research risks harming patients, damaging public trust and bringing the field into disrepute.  

 

Apart from the problems with misleading information, it is also important to consider the ethical and 

legal issues associated with the marketing of unproven stem cell therapies. Some practices would 

probably be regarded as unethical, but may still be legal. For instance, while it is currently illegal for 

clinics in the UK to sell unproven therapies for serious conditions such as Parkinson’s and heart 

disease, they can still facilitate these practices by providing cells to clinics based in countries where 

there is less regulatory oversight. Such an arrangement existed between the UK stem cell banking 

company, ‘Precious Cells’ (which entered into administration in 2018), and the Lebanon-based stem 

cell clinic, ‘Cells4Life’ (Mendick, 2012). It may also be the case that some banks/clinics are 

contravening trading standards legislation (Murdoch et al., 2018). For example, a Human Tissue 

Authority inspection report of a UK company that banks MSCs revealed that the preparation process 

dossier submitted by the company’s outsource partner did not demonstrate the presence of MSCs 

(Human Tissue Authority, 2016). It can thus be seen that this company did not appear to be complying 

with UK trading standards but was nevertheless able to operate.  

 

To address these issues, it would be helpful to define the key ethical concerns relating to the DTC 

marketing of stem cell therapies, identify the laws that could potentially impact their regulation and 

work with policy-makers towards improving legislation to curtail unethical practices. Without such 

action, there is a real danger that any potential future benefit of stem cell and regenerative medicine 

research will be overshadowed by the harmful practices of unscrupulous companies.  
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Figure legends 

 

 

Figure 1: The three types of regenerative medicine therapy discussed in this article, illustrated with 
reference to the kidney. The top row depicts direct application of stem cells to the damaged organ, in 
which they differentiate to make cells to replace the damaged tissue. The middle row depicts grafting 
of stem cells to another site in the body (perhaps in a container permeable to molecules not cells), 
where they secrete humoral factors that drive the cells of the natural kidney to regenerate the tissue. 
The bottom row depicts construction of a replacement kidney in vitro, followed by transplantation; 
this might be transplantation of a full-sized kidney, as depicted, or of an engineered rudiment that will 
grow in situ. In all rows, the stem cells might be patient-derived, with or without correction of 
underlying genetic defects.  
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Figure 2: Self-organization in renal organoids, and the importance of symmetry-breaking for large-
scale anatomical realism. The top row shows the first-developed method for making renal organoids, 
in which iPS cells are differentiated into mixed renogenic stem cells (eg nephron precursors shown in 
blue, stromal precursors in green and ureteric bud precursors in pink). The cells organize themselves 
into individually realistic tubules but there is no realistic gross anatomy. The middle row begins with 
generation of separated stem cells groups (different protocols do this to different extents); 
generation of a ureteric bud (UB) epithelium, and then mixing it with the other cell types, breaks the 
symmetry of the system by including one unique, local source of ureteric bud. This develops into a 
single, connected tree, and nephrons organize around it appropriately. The bottom row shows a 
possible way of improving realism still by breaking the symmetry of the ureteric tree using local BMP 
application; this works in organoids made from ex-fetu renogenic stem cells but has not yet been 
done with iPS-derived ones. 
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