57 research outputs found

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe

    Genome-wide by Environment Interaction Studies of Depressive Symptoms and Psychosocial Stress in UK Biobank and Generation Scotland

    Get PDF
    Stress is associated with poorer physical and mental health. To improve our understanding of this link, we performed genome-wide association studies (GWAS) of depressive symptoms and genome-wide by environment interaction studies (GWEIS) of depressive symptoms and stressful life events (SLE) in two UK population-based cohorts (Generation Scotland and UK Biobank). No SNP was individually significant in either GWAS, but gene-based tests identified six genes associated with depressive symptoms in UK Biobank (DCC, ACSS3, DRD2, STAG1, FOXP2 and KYNU; p < 2.77 x 10(-6)). Two SNPs with genome-wide significant GxE effects were identified by GWEIS in Generation Scotland: rs12789145 (53-kb downstream PIWIL4; p = 4.95 x 10(-9); total SLE) and rs17070072 (intronic to ZCCHC2; p = 1.46 x 10(-8); dependent SLE). A third locus upstream CYLC2 (rs12000047 and rs12005200, p < 2.00 x 10(-8); dependent SLE) when the joint effect of the SNP main and GxE effects was considered. GWEIS gene-based tests identified: MTNR1B with GxE effect with dependent SLE in Generation Scotland; and PHF2 with the joint effect in UK Biobank (p < 2.77 x 10(-6)). Polygenic risk scores (PRSs) analyses incorporating GxE effects improved the prediction of depressive symptom scores, when using weights derived from either the UK Biobank GWAS of depressive symptoms (p = 0.01) or the PGC GWAS of major depressive disorder (p = 5.91 x 10(-3)). Using an independent sample, PRS derived using GWEIS GxE effects provided evidence of shared aetiologies between depressive symptoms and schizotypal personality, heart disease and COPD. Further such studies are required and may result in improved treatments for depression and other stress-related conditions

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk

    The Physics of the B Factories

    Get PDF

    Predicting energy consumption of zero emission buses using route feature selection methods

    No full text
    This paper reports new insights into how the selection of route based characteristic parameters can influence the predicted energy consumption for next generation battery electric buses. 24 characteristic parameters have been studied to understand their relative importance on vehicle energy consumption and to develop new data-driven prediction models. The parameters are grouped into two scenarios, representative of the varying levels of route information available to a typical bus operator. A combination of feature selection methods was used to determine which characteristic parameters had the greatest influence on energy consumption. Regression based prediction models were developed, and models were then validated using standard and real vehicle drive cycles. The prediction models had a mean absolute percentage difference of 2.10–10.67%. This paper presents a novel methodology to estimate energy consumption of operating zero emission vehicles, which will support public transport operators, policy makers and energy suppliers in the decarbonisation of public transport.<br/

    Biological variation of cardiac myosin-binding protein C in healthy individuals

    No full text
    Objectives Cardiac myosin-binding protein C (cMyC) is a novel biomarker of myocardial injury, with a promising role in the triage and risk stratification of patients presenting with acute cardiac disease. In this study, we assess the weekly biological variation of cMyC, to examine its potential in monitoring chronic myocardial injury, and to suggest analytical quality specification for routine use of the test in clinical practice. Methods Thirty healthy volunteers were included. Non-fasting samples were obtained once a week for ten consecutive weeks. Samples were tested in duplicate on the Erenna(R) platform by EMD Millipore Corporation. Outlying measurements and subjects were identified and excluded systematically, and homogeneity of analytical and within-subject variances was achieved before calculating the biological variability (CVI and CVG), reference change values (RCV) and index of individuality (II). Results Mean age was 38 (range, 21-64) years, and 16 participants were women (53%). The biological variation, RCV and II with 95% confidence interval (CI) were: CVA (%) 19.5 (17.8-21.6), CVI (%) 17.8 (14.8-21.0), CVG (%) 66.9 (50.4-109.9), RCV (%) 106.7 (96.6-120.1)/-51.6 (-54.6 to -49.1) and II 0.42 (0.29-0.56). There was a trend for women to have lower CVG. The calculated RCVs were comparable between genders. Conclusions cMyC exhibits acceptable RCV and low II suggesting that it could be suitable for disease monitoring, risk stratification and prognostication if measured serially. Analytical quality specifications based on biological variation are similar to those for cardiac troponin and should be achievable at clinically relevant concentrations
    corecore