72 research outputs found
GALPROP WebRun: an internet-based service for calculating galactic cosmic ray propagation and associated photon emissions
GALPROP is a numerical code for calculating the galactic propagation of
relativistic charged particles and the diffuse emissions produced during their
propagation. The code incorporates as much realistic astrophysical input as
possible together with latest theoretical developments and has become a de
facto standard in astrophysics of cosmic rays. We present GALPROP WebRun, a
service to the scientific community enabling easy use of the freely available
GALPROP code via web browsers. In addition, we introduce the latest GALPROP
version 54, available through this service.Comment: Accepted for publication in Computer Physics Communications. Version
2 includes improvements suggested by the referee. Metadata completed in
version 3 (no changes to the manuscript
Cosmic Ray Spectra in Nambu-Goldstone Dark Matter Models
We discuss the cosmic ray spectra in annihilating/decaying Nambu-Goldstone
dark matter models. The recent observed positron/electron excesses at PAMELA
and Fermi experiments are well fitted by the dark matter with a mass of 3TeV
for the annihilating model, while with a mass of 6 TeV for the decaying model.
We also show that the Nambu-Goldstone dark matter models predict a distinctive
gamma-ray spectrum in a certain parameter space.Comment: 16 pages, 4 figure
Recommended from our members
The Gamma-Ray Albedo of the Moon
We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA
Robust implications on Dark Matter from the first FERMI sky gamma map
We derive robust model-independent bounds on DM annihilations and decays from
the first year of FERMI gamma-ray observations of the whole sky. These bounds
only have a mild dependence on the DM density profile and allow the following
DM interpretations of the PAMELA and FERMI electron/positron excesses: primary
channels mu+ mu-, mu+ mu-mu+mu- or e+ e- e+ e-. An isothermal-like density
profile is needed for annihilating DM. In all such cases, FERMI gamma spectra
must contain a significant DM component, that may be probed in the future.Comment: 16 pages, 8 figures. Final versio
Astrophysical Uncertainties in the Cosmic Ray Electron and Positron Spectrum From Annihilating Dark Matter
In recent years, a number of experiments have been conducted with the goal of
studying cosmic rays at GeV to TeV energies. This is a particularly interesting
regime from the perspective of indirect dark matter detection. To draw reliable
conclusions regarding dark matter from cosmic ray measurements, however, it is
important to first understand the propagation of cosmic rays through the
magnetic and radiation fields of the Milky Way. In this paper, we constrain the
characteristics of the cosmic ray propagation model through comparison with
observational inputs, including recent data from the CREAM experiment, and use
these constraints to estimate the corresponding uncertainties in the spectrum
of cosmic ray electrons and positrons from dark matter particles annihilating
in the halo of the Milky Way.Comment: 21 pages, 9 figure
VERITAS: the Very Energetic Radiation Imaging Telescope Array System
The Very Energetic Radiation Imaging Telescope Array System (VERITAS)
represents an important step forward in the study of extreme astrophysical
processes in the universe. It combines the power of the atmospheric Cherenkov
imaging technique using a large optical reflector with the power of
stereoscopic observatories using arrays of separated telescopes looking at the
same shower. The seven identical telescopes in VERITAS, each of aperture 10 m,
will be deployed in a filled hexagonal pattern of side 80 m; each telescope
will have a camera consisting of 499 pixels with a field of view of 3.5 deg
VERITAS will substantially increase the catalog of very high energy (E >
100GeV) gamma-ray sources and greatly improve measurements of established
sources.Comment: 44 pages, 16 figure
Pulsars as the Source of the WMAP Haze
The WMAP haze is an excess in the 22 to 93 GHz frequency bands of WMAP
extending about 10 degrees from the galactic center. We show that synchrotron
emission from electron-positron pairs injected into the interstellar medium by
the galactic population of pulsars with energies in the 1 to 100 GeV range can
explain the frequency spectrum of the WMAP haze and the drop in the average
haze power with latitude. The same spectrum of high energy electron-positron
pairs from pulsars, which gives rise to the haze, may also generate the
observed excesses in AMS, HEAT and PAMELA. We discuss the spatial morphology of
the pulsar synchrotron signal and its deviation from spherical symmetry, which
may provide an avenue to determine the pulsar contribution to the haze.Comment: 18 pages, 4 figures. Corrected errors in fig 1-3 and added discussion
of the detailed spatial morphology of the haze signa
Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope
Nearby clusters and groups of galaxies are potentially bright sources of
high-energy gamma-ray emission resulting from the pair-annihilation of dark
matter particles. However, no significant gamma-ray emission has been detected
so far from clusters in the first 11 months of observations with the Fermi
Large Area Telescope. We interpret this non-detection in terms of constraints
on dark matter particle properties. In particular for leptonic annihilation
final states and particle masses greater than ~200 GeV, gamma-ray emission from
inverse Compton scattering of CMB photons is expected to dominate the dark
matter annihilation signal from clusters, and our gamma-ray limits exclude
large regions of the parameter space that would give a good fit to the recent
anomalous Pamela and Fermi-LAT electron-positron measurements. We also present
constraints on the annihilation of more standard dark matter candidates, such
as the lightest neutralino of supersymmetric models. The constraints are
particularly strong when including the fact that clusters are known to contain
substructure at least on galaxy scales, increasing the expected gamma-ray flux
by a factor of ~5 over a smooth-halo assumption. We also explore the effect of
uncertainties in cluster dark matter density profiles, finding a systematic
uncertainty in the constraints of roughly a factor of two, but similar overall
conclusions. In this work, we focus on deriving limits on dark matter models; a
more general consideration of the Fermi-LAT data on clusters and clusters as
gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo,
minor revisions to be consistent with accepted versio
Fermi Large Area Telescope View of the Core of the Radio Galaxy Centaurus A
We present gamma-ray observations with the LAT on board the Fermi Gamma-Ray
Telescope of the nearby radio galaxy Centaurus~A. The previous EGRET detection
is confirmed, and the localization is improved using data from the first 10
months of Fermi science operation. In previous work, we presented the detection
of the lobes by the LAT; in this work, we concentrate on the gamma-ray core of
Cen~A. Flux levels as seen by the LAT are not significantly different from that
found by EGRET, nor is the extremely soft LAT spectrum
(\G=2.67\pm0.10_{stat}\pm0.08_{sys} where the photon flux is \Phi\propto
E^{-\G}). The LAT core spectrum, extrapolated to higher energies, is
marginally consistent with the non-simultaneous HESS spectrum of the source.
The LAT observations are complemented by simultaneous observations from Suzaku,
the Swift Burst Alert Telescope and X-ray Telescope, and radio observations
with the Tracking Active Galactic Nuclei with Austral Milliarcsecond
Interferometry (TANAMI) program, along with a variety of non-simultaneous
archival data from a variety of instruments and wavelengths to produce a
spectral energy distribution (SED). We fit this broadband data set with a
single-zone synchrotron/synchrotron self-Compton model, which describes the
radio through GeV emission well, but fails to account for the non-simultaneous
higher energy TeV emission observed by HESS from 2004-2008. The fit requires a
low Doppler factor, in contrast to BL Lacs which generally require larger
values to fit their broadband SEDs. This indicates the \g-ray emission
originates from a slower region than that from BL Lacs, consistent with
previous modeling results from Cen~A. This slower region could be a slower
moving layer around a fast spine, or a slower region farther out from the black
hole in a decelerating flow.Comment: Accepted by ApJ. 32 pages, 5 figures, 2 tables. J. Finke and Y.
Fukazawa corresponding author
The On-orbit Calibrations for the Fermi Large Area Telescope
The Large Area Telescope (LAT) on--board the Fermi Gamma ray Space Telescope
began its on--orbit operations on June 23, 2008. Calibrations, defined in a
generic sense, correspond to synchronization of trigger signals, optimization
of delays for latching data, determination of detector thresholds, gains and
responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA),
measurements of live time, of absolute time, and internal and spacecraft
boresight alignments. Here we describe on orbit calibration results obtained
using known astrophysical sources, galactic cosmic rays, and charge injection
into the front-end electronics of each detector. Instrument response functions
will be described in a separate publication. This paper demonstrates the
stability of calibrations and describes minor changes observed since launch.
These results have been used to calibrate the LAT datasets to be publicly
released in August 2009.Comment: 60 pages, 34 figures, submitted to Astroparticle Physic
- …