29 research outputs found

    Slow and fast micro-field components in warm and dense hydrogen plasmas

    Full text link
    The aim of this work is the investigation of the statistical properties of local electric fields in an ion-electron two component plasmas for coupled conditions. The stochastic fields at a charged or at a neutral point in plasmas involve both slow and fast fluctuation characteristics. The statistical study of these local fields based on a direct time average is done for the first time. For warm and dense plasma conditions, typically Ne1018cm3N_{e}\approx 10^{18}cm^{-3}, % T_{e}\approx 1eV, well controlled molecular dynamics (MD) simulations of neutral hydrogen, protons and electrons have been carried out. Relying on these \textit{ab initio} MD calculations this work focuses on an analysis of the concepts of statistically independent slow and fast local field components, based on the consideration of a time averaged electric field. Large differences are found between the results of these MD simulations and corresponding standard results based on static screened fields. The effects discussed are of importance for physical phenomena connected with stochastic electric field fluctuations, e.g., for spectral line broadening in dense plasmas.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Many-body approach to the nonlinear interaction of charged particles with an interacting free electron gas

    Get PDF
    We report various many-body theoretical approaches to the nonlinear decay rate and energy loss of charged particles moving in an interacting free electron gas. These include perturbative formulations of the scattering matrix, the self-energy, and the induced electron density. Explicit expressions for these quantities are obtained, with inclusion of exchange and correlation effects.Comment: 11 pages, 5 figures. To appear in Journal of Physics

    Axion Emission from Red Giants and White Dwarfs

    Full text link
    Using thermal field theory methods, we recalculate axion emission from dense plasmas. We study in particular the Primakoff and the bremsstrahlung processes. The Primakoff rate is significantly suppressed at high densities, when the electrons become relativistic. However, the bound on the axion-photon coupling, G<1010G<10^{-10} GeV, is unaffected, as it is constrained by the evolution of HB stars, which have low densities. In contradistinction, the same relativistic effects enhance the bremsstrahlung processes. From the red giants and white dwarfs evolution, we obtain a conservative bound on the axion-electron coupling, gae<2×1013g_{ae} < 2\times 10^{-13}.Comment: 17 pp, 3 PS figures, CERN-TH-7044/9

    A complex storm system in Saturn’s north polar atmosphere in 2018

    Get PDF
    Producción CientíficaSaturn’s convective storms usually fall in two categories. One consists of mid-sized storms ∼2,000 km wide, appearing as irregular bright cloud systems that evolve rapidly, on scales of a few days. The other includes the Great White Spots, planetary-scale giant storms ten times larger than the mid-sized ones, which disturb a full latitude band, enduring several months, and have been observed only seven times since 1876. Here we report a new intermediate type, observed in 2018 in the north polar region. Four large storms with east–west lengths ∼4,000–8,000 km (the first one lasting longer than 200 days) formed sequentially in close latitudes, experiencing mutual encounters and leading to zonal disturbances affecting a full latitude band ∼8,000 km wide, during at least eight months. Dynamical simulations indicate that each storm required energies around ten times larger than mid-sized storms but ∼100 times smaller than those necessary for a Great White Spot. This event occurred at about the same latitude and season as the Great White Spot in 1960, in close correspondence with the cycle of approximately 60 years hypothesized for equatorial Great White Spots.Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (project AYA2015-65041-P)Gobierno Vasco (project IT-366-19

    An Extremely Elongated Cloud over Arsia Mons Volcano on Mars: I. Life Cycle

    Get PDF
    We report a previously unnoticed annually repeating phenomenon consisting of the daily formation of an extremely elongated cloud extending as far as 1800 km westward from Arsia Mons. It takes place in the Solar Longitude (Ls) range of ~220-320, around the Southern solstice. We study this Arsia Mons Elongated Cloud (AMEC) using images from different orbiters, including ESA Mars Express, NASA MAVEN, Viking 2, MRO, and ISRO Mars Orbiter Mission (MOM). We study the AMEC in detail in Martian Year (MY) 34 in terms of Local Time and Ls and find that it exhibits a very rapid daily cycle: the cloud growth starts before sunrise on the western slope of the volcano, followed by a westward expansion that lasts 2.5 hours with a velocity of around 170 m/s in the mesosphere (~45 km over the areoid). The cloud formation then ceases, it detaches from its formation point, and continues moving westward until it evaporates before the afternoon, when most sun-synchronous orbiters observe. Moreover we comparatively study observations from different years (i.e. MYs 29-34) in search of interannual variations and find that in MY33 the cloud exhibits lower activity, whilst in MY34 the beginning of its formation was delayed compared to other years, most likely due to the Global Dust Storm. This phenomenon takes place in a season known for the general lack of clouds on Mars. In this paper we focus on observations, and a theoretical interpretation will be the subject of a separate paper

    Cellular patterns and dry convection in textured dust storms at the edge of Mars North Polar Cap

    Get PDF
    We present a study of textured local dust storms that develop at the northern polar cap boundary on Mars springtime. We have used images obtained with VMC and HRSC cameras onboard Mars Express and MARCI on MRO to analyze dust storms captured from March to July 2019 (Ls = 350° in MY 34–Ls = 54° in MY 35). The textured storms grow in the longitude sector 150°E-210°E centered at latitude ~60°N and exhibit spiral, filamentary and compact shapes that change and evolve rapidly in a daily basis. The storms translate by prevailing east and southeast winds with speeds 15–45 ms−1. In some areas of their interiors they show organized clusters of cells formed typically by 100 elements with sizes ~5–30 km with a length/width ratio ~ 1.2–3 in the wind direction. The cells have elongated downwind tails with lengths 4–8 times the cell size. The cells top altitudes are ~6–11 km above their surroundings. We propose that the spirals grow as baroclinic vortices within a vertically sheared eastward jet present at this epoch in Mars due to the intense meridional temperature gradient at the polar cap edge. We show using a simple one-dimensional model that the cells can be produced by shallow dry convection with dust acting as the heating source to generate the updrafts. These patterns resemble those seen in laboratory experiments and on clouds in Earth's atmosphere and can serve to comparatively elucidate and discern the different mechanisms at work in each case

    Nonlinear interaction of charged particles with a free electron gas beyond the random-phase approximation

    Get PDF
    A nonlinear description of the interaction of charged particles penetrating a solid has become of basic importance in the interpretation of a variety of physical phenomena. Here we develop a many-body theoretical approach to the quadratic decay rate, energy loss, and wake potential of charged particles moving in an interacting free electron gas. Explicit expressions for these quantities are obtained either within the random-phase approximation (RPA) or with full inclusion of short-range exchange and correlation effects. The Z^3 correction to the energy loss of ions is evaluated beyond RPA, in the limit of low velocities.Comment: 5 pages, 2 figures To appear in Phys. Rev.

    An enduring rapidly moving storm as a guide to Saturn’s Equatorial jet’s complex structure

    Get PDF
    Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn's equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450 ms(-1) not measured since 1980-1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet ( latitudes 10 degrees N to 10 degrees S) suffers intense vertical shears reaching + 2.5 ms(-1) km(1), two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level. Palabras claveThis work is based on observations and analysis from Hubble Space Telescope (GO/DD program 14064), Cassini ISS images (NASA pds), and Calar Alto Observatory (CAHA-MPIA). A.S.-L. and UPV/EHU team are supported by the Spanish projects AYA2012-36666 and AYA2015-65041-P with FEDER support, Grupos Gobierno Vasco IT-765-13, Universidad del Pais Vasco UPV/EHU program UFI11/55, and Diputacion Foral Bizkaia (BFA). We acknowledge the contribution of Saturn images by T. Olivetti, M. Kardasis, A. Germano, A. Wesley, P. Miles, M. Delcroix, C. Go, T. Horiuchi and P. Maxon. We also acknowledge the wind model data provided by J. Friedson

    Nocturnal Turbulence at Jezero Crater as Determined From MEDA Measurements and Modeling

    Get PDF
    Mars 2020 Mars Environmental Dynamics Analyzer (MEDA) instrument data acquired during half of a Martian year (Ls 13°–180°), and modeling efforts with the Mars Regional Atmospheric Modeling System (MRAMS) and the Mars Climate Database (MCD) enable the study of the seasonal evolution and variability of nocturnal atmospheric turbulence at Jezero crater. Nighttime conditions in Mars's Planetary Boundary Layer are highly stable because of strong radiative cooling that efficiently inhibits convection. However, MEDA nighttime observations of simultaneous rapid fluctuations in horizontal wind speed and air temperatures suggest the development of nighttime turbulence in Jezero crater. Mesoscale modeling with MRAMS also shows a similar pattern and enables us to investigate the origins of this turbulence and the mechanisms at play. As opposed to Gale crater, less evidence of turbulence from breaking mountain wave activity was found in Jezero during the period studied with MRAMS. On the contrary, the model suggests that nighttime turbulence at Jezero crater is explained by increasingly strong wind shear produced by the development of an atmospheric bore-like disturbance at the nocturnal inversion interface. These atmospheric bores are produced by downslope winds from the west rim undercutting a strong low-level jet aloft from ∼19:00 to 01:00 LTST and from ∼01:00 LTST to dawn when undercutting weak winds aloft. The enhanced wind shear leads to a reduction in the Richardson number and an onset of mechanical turbulence. Once the critical Richardson Number is reached (Ri ∼ <0.25), shear instabilities can mix warmer air aloft down to the surface.This research was funded by Grant RTI2018-098728-B-C31 and PN2021-PID2021-126719OB-C41 by the Spanish Ministry of Science and Innovation/State Agency of Research MCIN/AEI/10.13039/501100011033. AM, ASL, TR, and RH were supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/and by Grupos Gobierno Vasco IT1366-19. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). The JPL co-authors acknowledge funding from NASA's Space Technology Mission Directorate and the Science Mission Directorate. CEN was supported by funding from the Mars 2020 mission, part of the NASA Mars Exploration Program

    Mars 2020 Perseverance Rover Studies of the Martian Atmosphere Over Jezero From Pressure Measurements

    Get PDF
    The pressure sensors on Mars rover Perseverance measure the pressure field in the Jezero crater on regular hourly basis starting in sol 15 after landing. The present study extends up to sol 460 encompassing the range of solar longitudes from Ls ∼ 13°–241° (Martian Year (MY) 36). The data show the changing daily pressure cycle, the sol-to-sol seasonal evolution of the mean pressure field driven by the CO2 sublimation and deposition cycle at the poles, the characterization of up to six components of the atmospheric tides and their relationship to dust content in the atmosphere. They also show the presence of wave disturbances with periods 2–5 sols, exploring their baroclinic nature, short period oscillations (mainly at night-time) in the range 8–24 min that we interpret as internal gravity waves, transient pressure drops with duration ∼1–150 s produced by vortices, and rapid turbulent fluctuations. We also analyze the effects on pressure measurements produced by a regional dust storm over Jezero at Ls ∼ 155°.The UPV/EHU team (Spain) is supported by Grant PID2019-109467GB-I00 funded by 1042 MCIN/AEI/10.13039/501100011033/ and by Groups Gobierno Vasco IT1742-22. GM wants to acknowledge JPL funding from USRA Contract Number 1638782. A. Vicente-Retortillo is supported by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”- Centro de Astrobiología (INTA-CSIC). Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). GM wants to acknowledge JPL funding from USRA Contract Number 1638782
    corecore