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A nonlinear description of the interaction of charged particles penetrating a solid has become of basic
importance in the interpretation of a variety of physical phenomena. Here we develop a many-body theoretical
approach to the quadratic decay rate, energy loss, and wake potential of charged particles moving in an
interacting free electron gas. Explicit expressions for these quantities are obtained either within the random-
phase approximation~RPA! or with full inclusion of short-range exchange and correlation effects. TheZ1

3

correction to the energy loss of ions is evaluated beyond the RPA, in the limit of low velocities.
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When charged particles pass through a solid, energy
be lost to the medium through various types of elastic a
inelastic collision processes.1 While at relativistic velocities
radiative losses may become important, for moving char
particles in the nonrelativistic regime the energy loss is p
marily due to electron-electron (e-e) interactions giving rise
to the generation of electron-hole pairs, collective excitatio
such as plasmons, and inner-shell excitations and ionizati
Energy losses due to nuclear recoil are negligible, unless
projectile velocity is very small compared to the mean sp
of electrons in the solid.2

The inelastic decay rate of charged particles in a deg
erate interacting free electron gas~FEG! has been calculate
for many years in the first Born approximation or, equiv
lently, within linear-response theory. This is a good appro
mation when the velocity of the projectile is much grea
than the average velocity of target electrons. However, in
case of projectiles moving with smaller velocities, nonli
earities have been shown to play a key role in the interp
tation of a variety of experiments. Energy-loss measurem
have revealed differences, not present within linear-respo
theory, between the energy loss of protons and antiproton3,4

Moreover, experimentally observed coherent doub
plasmon excitations5,6 cannot be described within linea
response theory, and nonlinearities may also play an im
tant role in the electronic wake generated by moving ions
a FEG.7

Pioneering nonlinear calculations of the electronic ene
loss of low-energy ions in an electron gas were performed
Echeniqueet al.8 These authors computed the scatter
cross section for a statically screened potential, which w
determined self-consistently using density-functional the
~DFT!.9 These static-screening calculations have rece
been extended to velocities approaching the Fermi velocit10

Second-order perturbative calculations, which do not h
the limitation of being restricted to low projectile velocitie
have been reported by different authors with use of
random-phase approximation~RPA! and by treating the
moving charged particle as a prescribed source of energy
momentum.11–15
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In this paper, we report a many-body theoretical appro
to the quadratic decay rate, energy loss, and wake pote
of charged particles moving in an interacting FEG. The d
cay rate is derived from the knowledge of the projectile se
energy. The energy loss and wake potential are obtai
within quadratic response theory. While the first-order co
tribution to the energy loss may also be obtained from
imaginary part of the projectile self-energy by simply inse
ing the energy transfer inside the integrand of this quant
our results indicate that this procedure cannot be general
to the description of the second-order energy loss. Un
otherwise is stated, we use atomic units throughout, i.e.e2

5\5me51.
We consider the interaction of a moving probe particle

chargeZ1 and massM with a FEG of densityn. The probe
particle is assumed to be distinguishable from the electr
in the Fermi gas, which is described by an isotropic hom
geneous assembly of interacting electrons immersed in a
form background of positive charge and volumeV. Many-
body theory shows that the probability for the probe parti
to occupy a given excited state of four-momentump decays
exponentially in time with the decay constant16

t21522 ImSp , ~1!

whereSp represents the particle self-energy.
It is well known that the self-energy cannot be comput

by simply evaluating the lowest-order Feynman diagram
because of severe infrared divergences due to the long-r
Coulomb interaction. Instead, one needs to resum elect
loop corrections and expand in terms of the dynamica
screened interaction. Up to third order inZ1, the self-energy
of the probe particle can be represented diagrammaticall
shown in Fig. 1. The sum of the first two diagrams represe
the so-calledGW approximation, and the third diagram a
counts forZ1

3 corrections. One finds
6862 ©2000 The American Physical Society
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Sp5 iZ1
2E dq4

~2p!4 vqDp2qF ~11xqvq!

22iZ1E d4q1

~2p!4Dp2q1
Dp2q1q1

Yq,2q1
vq1

vq2q1G ,
~2!

wherevq is the Fourier transform of the bare Coulomb p
tential,Dp is the probe-particle propagator,

Dp5
1

p02vp2Sp1 ih
, ~3!

vp5p2/(2M ) is the noninteracting energy, andh is a posi-
tive infinitesimal.xq andYq1 ,q2

representexacttime-ordered
density correlation functions of the interacting FEG,

xq5
1

V (
n

u~rq!n0u2F 1

q01v0n1 ih
2

1

q02v0n2 ih
G ~4!

and

Yq1 ,q2
52

1

2V(
n,l

F ~rq1
!0n~rq3

!nl~rq2
! l0

~q1
01v0n1 ih!~q2

01v l02 ih!

1
~rq2

!0n~rq1
!nl~rq3

! l0

~q2
01v0n1 ih!~q3

01v l02 ih!

1
~rq3

!0n~rq2
!nl~rq1

! l0

~q3
01v0n1 ih!~q1

01v l02 ih!
1~q2→q3!G ,

~5!

(rq)nl being the matrix element of the Fourier transform
the electron-density operator, taken between exact ma
electron states of energyEn and El , vnl5En2El , andq3
52(q11q2).

If the probe particle is an ion (M@1), the propagatorDp
and the energyp0 entering Eq.~2! can be safely approxi
mated by the noninteracting propagatorDp

0 and energyvp .
Recoil can also be neglected, and the introduction of Eq.~2!
into Eq. ~1! then yields, after some work of rearrangeme
the following expression:

FIG. 1. The probe-particle self-energy, up to third order inZ1.
Thick solid lines represent the exact probe-particle propagatoriD p .
Dashed lines represent the bare Coulomb interaction2 ivq . Two-
and three-point loops represent time-ordered density correla
functionsixq and22Yq1 ,q2

, respectively.
f
y-

,

t2154pZ1
2E dq4

~2p!4 vqd~q02q•v!Q~q0!

3F2ImKq1
4

3
pZ1E d4q1

~2p!4 Im Yq,2q1
vq1

vq2q1

3d~q1
02q1•v!G , ~6!

wherev is the particle velocity,Q(x) represents the Heavi
side step function, andKq is the so-called test-charge–tes
charge inverse dielectric function:

Kq511xqvq . ~7!

The decay rate of Eq.~6! has not been reported before.
In the RPA, density correlation functions are obtained

summing over all ringlike diagrams,

xq
RPA5xq

01xq
0vqxq

RPA ~8!

and

Yq1 ,q2

RPA 5Kq1

RPAYq1 ,q2

0 K2q2

RPAK2q3

RPA, ~9!

wherexq
0 andYq1 ,q2

0 represent noninteracting density corr

lation functions. Improvements on the RPA are typically c
ried out by introducing an effectivee-e interaction17

ṽq5vq~12Gq!, ~10!

where Gq is the so-called local-field factor accounting fo
short-range exchange and correlation~xc! effects not presen
in the RPA. Accordingly, the density correlation function
xq andYq1 ,q2

are found to be of the RPA form, but with a

e-e bare Coulomb interactionsvq replaced byṽq , i.e.,

xq5xq
01xq

0ṽqxq ~11!

and

Yq1 ,q2
5K̃q1

Yq1 ,q2

0 K̃2q2
K̃2q3

, ~12!

where K̃q is the test-charge–electron inverse dielect

function,18,19

K̃q511xqṽq . ~13!

In the RPA,Kq and K̃q coincide.
The potential induced in a uniform FEG by the presen

of a recoiless probe particle may be obtained with the use
time-dependent perturbation theory. Keeping terms of fi
and second order in the external perturbation, one finds

Vind~r ,t !52pZ1E d4q

~2p!4ei (q•r2q0t)vqd~q02q•v!F ~Kq
R21!

22pZ1E d4q1

~2p!4 Yq,2q1

R vq1
vq2q1

d~q1
02q1•v!G ,

~14!

where we have introduced the retarded counterparts of
time-ordered functionsKq andYq,2q1

entering Eq.~6!.
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The average energy lost per unit length traveled by
probe particle is obtained as the retarding force due to
potential of Eq.~14! induced in the vicinity of the projectile
itself. One easily finds

2
dE

dx
54pZ1

2E d4q

~2p!4 q0vqd~q02q•v!Q~q0!

3F2Im Kq
R12pZ1E d4q1

~2p!4 Im Yq,2q1

R vq1
vq2q1

3d~q1
02q1•v!G . ~15!

Both Eq.~6! for the decay rate and Eq.~15! for the energy
loss can be derived, within many-body perturbation theo
from the knowledge of the probability for the probe partic
to transfer four-momentumq to the FEG.20 Nevertheless, this
probability cannot be identified with the integrand of Eq.~6!,
and therefore the energy loss of Eq.~15! cannot be obtained
by simply inserting the energy transfer inside the integra
of Eq. ~6!.

In the framework of time-dependent density-function
theory ~TDDFT!,21 quadratic response theory yields

xq
R5xq

R,01xq
R,0~vq1 f q

xc!xq
R , ~16!

Yq1 ,q2

R 5K̃q1

R Yq1 ,q2

0 K̃2q2

R K̃2q3

R , ~17!

Kq
R511xq

Rvq , ~18!

and

K̃q
R511xq

R~vq1 f q
xc!, ~19!

wherexq
R,0 andYq1 ,q2

R,0 represent retarded noninteracting de

sity correlation functions, andf q
xc denotes the Fourier trans

form of

f xc~x,x8!5
dVxc~@n#,x!

dn~x8!
, ~20!

Vxc(@n#,x) being the exact time-dependent xc potential
TDDFT.21 Within the RPA f q

xc50, and the introduction of
Eqs. ~17! and ~18! into Eqs. ~14! and ~15! then yields the
results derived in Refs. 11–15.

At this point, we present an application of our formalis
namely, the low-velocity limit of the energy loss with inclu
sion of short-range xc effects. For low projectile velociti
(v→0), only the static (v→0) xq

R,0 , Yq1 ,q2

R,0 , and f q
xc enter

in the evaluation of the energy loss of Eq.~15!, which is then
easily found to be proportional to the projectile velocity.
particular, in the so-called local-density approximati
~LDA !, which is rigorous in the long-wavelength limit (q
→0), one finds

f q
xc5

4p

qF
2 F1

4
2

4p

qF
2

d2Ec

dn2 G , ~21!

Ec(n) being the correlation energy of a uniform electron g
of densityn.
e
e

,

d

l

-

f

,

s

Diffusion Monte Carlo calculations ofxq
0 have shown that

the LDA static xc kernel of Eq.~21! reproduces correctly the
static response for allq<2qF .22 We have calculated stati
density correlation functions from Eqs.~16! and ~17!, with
use of the LDA static xc kernel of Eq.~21! and the
Perdew-Zunger23 parametrization of the quantum Mont
Carlo correlation energyEc(n) of Ceperley and Alder.24

In Fig. 2 we show linear (}Z1
2) and quadratic (}Z1

3) con-
tributions to the low-velocity energy loss of Eq.~15! divided
by the velocity of the projectile, as a function of the electro
density parameterr s .25 Comparison between our resul
~solid and short-dashed lines! and those obtained within th
RPA ~long-dashed and dotted lines! indicates that xc effects
become increasingly important as the electron density
creases, the impact of these effects being more pronoun
for theZ1

3 than for theZ1
2 contribution to the energy loss. A

a result, the importance of the quadratic contribution
creases when xc effects are included, and forr s;2.5 it is
equal in magnitude to the linear contribution~within the
RPA, linear and quadratic contributions are equal forr s
;5).

The crosses and rhombs in Fig. 2 represent the full n
linear contribution to the energy loss~difference between the
total energy loss and the linear contribution!, multiplied by a
factor of21, as obtained from DFT calculations for antipr
tons to all orders inZ1,26 with xc effects excluded~crosses!
and with LDA xc effects included~rhombs!. Both full non-
linear calculations are found to agree nicely with o
quadratic-response calculations in the high-density limitr s
→0). As the electron density decreases, quadratic-resp
calculations overestimate the energy loss of antiprotons,
pecially when xc effects are included, showing that xc a
nonlinear~beyondZ1

3) effects tend to compensate.
Finally, we note that linear and quadratic contributions

FIG. 2. Z1
2 and Z1

3 contributions to the low-velocity electronic
stopping power of Eq.~15! divided by the velocity of the projectile
as a function ofr s , for Z151. Our full calculations, as obtaine
with inclusion of LDA exchange and correlation, are represented
solid (Z1

2 contribution! and short-dashed (Z1
3 contribution! lines.

Long-dashed (Z1
2) and dotted (Z1

3) lines represent the correspond
ing results obtained within the RPA (f q

xc50). The difference~mul-
tiplied by a factor of21) between the full nonlinear stoppin
power for antiprotons, as reported in Ref. 26, and the linear con
bution is represented by crosses~xc effects excluded! and rhombs
~LDA xc included!.
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the energy loss can be extracted from the small-Z1 behavior
of full nonlinear DFT calculations, which have been report
in the low-velocity limit.8 When (2dE/dx)/Z1

2 is plotted as
a function of Z1, the result has a linearZ1 dependence a
small Z1. The intercept and the slope of this curve atZ1
50 give linear and quadratic contributions to the full no
linear energy loss, as shown in Ref. 12, by simply ignor
xc effects. These authors repeated their full nonlinear D
calculations with LDA xc included, but were unable to com
pare them with quadratic-response calculations that inclu
xc effects at the same level of approximation. The results
these quadratic-response calculations are now shown in
2. It can be seen that the ratio between xc-included~short-
dashed line! and xc-excluded~dotted line! quadratic contri
butions to the energy loss is in excellent agreement with
ratios reported in Ref. 12~see Fig. 7 of this reference! as
y

Le

H

e

m

d

g
T

d
f

ig.

e

derived from theZ1 dependence of full nonlinear DFT ca
culations.

In conclusion, we have developed a many-body theor
cal approach to the quadratic decay rate, energy loss,
wake potential of charged particles moving in an electr
gas, with full inclusion of short-range xc effects. We ha
shown that in the limit of high electron densities and lo
projectile charges our calculated quadratic energy lo
which can be extended to the case of larger velocities, re
duces DFT calculations for antiprotons, as long as excha
and correlation are treated at the same level of accuracy

The authors acknowledge partial support by the Univers
of the Basque Country, the Basque Hezkuntza, Unibertsi
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