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A nonlinear description of the interaction of charged particles penetrating a solid has become of basic
importance in the interpretation of a variety of physical phenomena. Here we develop a many-body theoretical
approach to the quadratic decay rate, energy loss, and wake potential of charged particles moving in an
interacting free electron gas. Explicit expressions for these quantities are obtained either within the random-
phase approximatiofRPA) or with full inclusion of short-range exchange and correlation effects. Z’}me
correction to the energy loss of ions is evaluated beyond the RPA, in the limit of low velocities.

When charged patrticles pass through a solid, energy can In this paper, we report a many-body theoretical approach
be lost to the medium through various types of elastic ando the quadratic decay rate, energy loss, and wake potential
inelastic collision processéswhile at relativistic velocities of charged particles moving in an interacting FEG. The de-
radiative losses may become important, for moving chargeday rate is derived from the knowledge of the projectile self-
particles in the nonrelativistic regime the energy loss is Plienergy. The energy loss and wake potential are obtained

marily due to electron-electrore{e) interactions giving rise i’ quadratic response theory. While the first-order con-
to the generation of electron-hole pairs, collective excitation ibution to the enerav loss mav also be obtained from the
such as plasmons, and inner-shell excitations and ionizations. 9y y

Energy losses due to nuclear recoil are negligible, unless th@1adinary part of the projectile self-energy by simply insert-

projectile velocity is very small compared to the mean speedd the energy transfer inside the integrand of this quantity,

of electrons in the solid. our results indicate that this procedure cannot be generalized
The inelastic decay rate of charged particles in a degerto the description of the second-order energy loss. Unless

erate interacting free electron gd=EG) has been calculated otherwise is stated, we use atomic units throughout, é%.,

for many years in the first Born approximation or, equiva-=#=m,=1.

lently, within linear-response theory. This is a good approxi- \We consider the interaction of a moving probe particle of

mation when the velocity of the projectile is much greaterchargez, and massvl with a FEG of densityn. The probe

than the average velocity of target electrons. However, in they, icle js assumed to be distinguishable from the electrons

case of projectiles moving with smaller velop|t|es, .nonlm- in the Fermi gas, which is described by an isotropic homo-
earities have been shown to play a key role in the interpre- . : . : .
tation of a variety of experiments. Energy-loss measurementdeneous assembly of interacting electrons immersed in a uni-

have revealed differences, not present within linear-respond@'™M background of positive charge and volurvie Many-

theory, between the energy loss of protons and antiprdtdns. body theory shows that the probability for the probe particle

Moreover, experimentally observed coherent doublelo occupy a given excited state of four-momentprdecays

plasmon excitation€ cannot be described within linear- exponentially in time with the decay constéht

response theory, and nonlinearities may also play an impor-

tant role in the electronic wake generated by moving ions in

a FEG/ T l=—-2Im3,, 1)
Pioneering nonlinear calculations of the electronic energy

loss of low-energy ions in an electron gas were performed by

Echeniqueet al® These authors computed the scatteringwhereX, represents the particle self-energy.

cross section for a statically screened potential, which was It is well known that the self-energy cannot be computed

determined self-consistently using density-functional theorypy simply evaluating the lowest-order Feynman diagrams,

(DFT).° These static-screening calculations have recentljpecause of severe infrared divergences due to the long-range

been extended to velocities approaching the Fermi veldgity. Coulomb interaction. Instead, one needs to resum electron-

Second-order perturbative calculations, which do not havéoop corrections and expand in terms of the dynamically

the limitation of being restricted to low projectile velocities, screened interaction. Up to third order4y, the self-energy

have been reported by different authors with use of thef the probe particle can be represented diagrammatically as

random-phase approximatiofRPA) and by treating the shown in Fig. 1. The sum of the first two diagrams represents

moving charged particle as a prescribed source of energy aritle so-calledsW approximation, and the third diagram ac-

momentumtt=1° counts forZ3 corrections. One finds
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FIG. 1. The probe-particle self-energy, up to third ordeZin
Thick solid lines represent the exact probe-particle propagatgr
Dashed lines represent the bare Coulomb interaction,. Two-
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wherev is the particle velocity®(x) represents the Heavi-
side step function, an#{, is the so-called test-charge—test-
charge inverse dielectric function:

and three-point loops represent time-ordered density correlation

functionsi x4 and — 2Yq, qy respectively.
o dq*
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whereuv is the Fourier transform of the bare Coulomb po-
tential, D, is the probe-particle propagator,

1

D=5 .
P’ wp— 2ty

p 3
wp=p2/(2M) is the noninteracting energy, anglis a posi-
tive infinitesimal.x, andY, . represenexacttime-ordered
density correlation functions of the interacting FEG,
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(pg)ni being the matrix element of the Fourier transform of

electron states of enerdy, andE;, w,=
=—(A1102).

If the probe partlcle is an ionM>1), the propagatoD ,
and the energy® entering Eq.(2) can be safely approxi-
mated by the noninteracting propaga[mg and energyw, .
Recoil can also be neglected, and the introduction of(Eg.

E,—E;, andq;

the electron-density operator, taken between exact mam@md(r 0= 277 f
TEy

)

The decay rate of E(q6) has not been reported before.
In the RPA, density correlation functions are obtained by
summing over all ringlike diagrams,

Kg=1+xqvq-

Xe =Xt xquaxg ®
and
RPA RPA\/0 RPA/,RPA
qu a, K Aqu qZK_Q;AK_Q3 (9)
wherqu and Yg «q, epresent noninteracting density corre-

lation functions. Improvements on the RPA are typically car-
ried out by introducing an effective-e interactiort’

vq=vq(1-Gy), (10)

where G, is the so-called local-field factor accounting for
short-range exchange and correlatizn) effects not present
in the RPA. Accordingly, the density correlation functions
Xq andYy o, are found to be of the RPA form, but with all

e-e bare Coulomb interactions, replaced byN;q, ie.,

Xa=Xa+ XoUaXq (11)

and

Y =Kq. Y0

g1 " dyq» Q2K

gy.0s K—q3| (12)

where Rq is the test-charge—electron inverse dielectric
function 819

Kg=1+xquq- (13
In the RPA,K, andK coincide.

The potential induced in a uniform FEG by the presence
of a recoiless probe particle may be obtained with the use of
time-dependent perturbation theory. Keeping terms of first
and second order in the external perturbation, one finds

4q . 0
am et veda’=a-y)

_27TZ]_J'

(K§-1)

da
(27 )4Yq -q,YqYa-q; (qcl)_%'V) )

(14)

into Eq. (1) then yields, after some work of rearrangement,where we have introduced the retarded counterparts of the

the following expression:

time-ordered function& and Ya,-q, entering Eq.(6).
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The average energy lost per unit length traveled by the 0.4 y
probe particle is obtained as the retarding force due to the 0.35 | |
potential of Eq.(14) induced in the vicinity of the projectile '
itself. One easily finds 03 |
dE d4q 3 0By 1
- 2 0 0_QH. 0 8 e
d4q 8 015+ 1
R 1 R o
X _Iqu+27Tzlf Wleqv7q1Uq10q7q1 0.1t e
005 | et -]
X 8(03—d1-V) |- (15) okl
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Both Eq.(6) for the decay rate and EL5) for the energy
loss can be derived, within many-body perturbation theory, g, 2. 72 and z3 contributions to the low-velocity electronic
from the knowledge of the probability for the probe particle siopping power of Eq15) divided by the velocity of the projectile,
to transfer four-momentum to the FEG™ Nevertheless, this  as a function ofr,, for Z,=1. Our full calculations, as obtained
probability cannot be identified with the integrand of E8),  with inclusion of LDA exchange and correlation, are represented by
and therefore the energy loss of E5) cannot be obtained solid (22 contribution and short-dashedz contribution lines.
by simply inserting the energy transfer inside the integrand.ong-dashed2?) and dotted Z3) lines represent the correspond-

of Eq. (6). ing results obtained within the RPA{*=0). The differencémul-
In the framework of time-dependent density-functionaltiplied by a factor of —1) between the full nonlinear stopping
theory (TDDFT),! quadratic response theory yields power for antiprotons, as reported in Ref. 26, and the linear contri-
& RO RO o R bution is_represented by crosses effects excludedand rhombs
Xq=Xq T Xq (gt Ti)Xq, (16 (LDA xc included.
Y 0,=Kq Yo, 0,K 0K, 17 Diffusion Monte Carlo calculations ofg have shown that
the LDA static xc kernel of Eq(21) reproduces correctly the
Ki=1+xfvq, (18)  static response for ati=<2qg.%> We have calculated static
density correlation functions from Eq&l6) and (17), with
and use of the LDA static xc kernel of Eq(21) and the
~R R ‘e Perdew-Zungéf parametrization of the quantum Monte
Kg=1+Xxq(vqtfg), (19 Carlo correlation energi.(n) of Ceperley and Aldet?

. . 2 . 3
wherey?° andYR? represent retarded noninteracting den- _ N Fig. 2 we show linear<¢Z3) and quadratic¢Z;) con-

. 4 - e . _ tributions to the low-velocity energy loss of E@.5) divided
sity correlation functions, antf® denotes the Fourier trans- py the velocity of the projectile, as a function of the electron-
form of density parameter.?® Comparison between our results
‘e (solid and short-dashed lineand those obtained within the
FXS(x,x" ) = oV7H([n],x) (20) RPA (long-dashed and dotted lineimdicates that xc effects
' sn(x’) become increasingly important as the electron density de-

) _ ) creases, the impact of these effects being more pronounced
VXC([”]g(l) being the exact time-dependent xc potential offor the 73 than for thez? contribution to the energy loss. As
TDDFT.” Within the RPAf;"=0, and the introduction of 5 resylt, the importance of the quadratic contribution in-
Egs. (17) and (18) into Egs.(14) and (15) then yields the creases when xc effects are included, andrior2.5 it is
results derived in Refs. 11-15. _equal in magnitude to the linear contributigwithin the
At this point, we present an application of our formalism, Rpa  linear and quadratic contributions are equal fgr
namely, the low-velocity limit of the energy loss with inclu- _ gy

sion of short-range xc effects. For low projectile velocities  The crosses and rhombs in Fig. 2 represent the full non-
(v—0), only the static —0) xg°, Yq.q . andf;° enter  |inear contribution to the energy losifference between the
in the evaluation of the energy loss of E5), which is then  total energy loss and the linear contributiomultiplied by a
easily found to be proportional to the projectile velocity. In factor of — 1, as obtained from DFT calculations for antipro-
particular, in the so-called local-density approximationtons to all orders irz;,%® with xc effects excludedcrosses
(LDA), which is rigorous in the long-wavelength limij( and with LDA xc effects includedrhombs. Both full non-
—0), one finds linear calculations are found to agree nicely with our
guadratic-response calculations in the high-density limjt (

w 4m| 1l 4w d’E, —0). As the electron density decreases, quadratic-response
q :azF‘ a1 Eg _d Rk (21) calculations overestimate the energy loss of antiprotons, es-

pecially when xc effects are included, showing that xc and

E.(n) being the correlation energy of a uniform electron gasnonlinear(beyondZ?) effects tend to compensate.
of densityn. Finally, we note that linear and quadratic contributions to
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the energy loss can be extracted from the sralbehavior  derived from theZ,; dependence of full nonlinear DFT cal-

of full nonlinear DFT calculations, which have been reportedculations.

in the low-velocity limit® When (—dE/dx)/Zi is plotted as In conclusion, we have developed a many-body theoreti-
a function ofZ,, the result has a lineaZ,; dependence at cal approach to the quadratic decay rate, energy loss, and
small Z,. The intercept and the slope of this curveZyt  wake potential of charged particles moving in an electron
=0 give linear and quadratic contributions to the full non-gas, with full inclusion of short-range xc effects. We have
linear energy loss, as shown in Ref. 12, by simply ignoringshown that in the limit of high electron densities and low
xc effects. These authors repeated their full nonlinear DFTprojectile charges our calculated quadratic energy loss,
calculations with LDA xc included, but were unable to com-hijch can be extended to the case of larger velocities, repro-
pare them with quadratic-response calculations that includegces DFT calculations for antiprotons, as long as exchange

xc effects at the same level of approximation. The results ofnq correlation are treated at the same level of accuracy.
these quadratic-response calculations are now shown in Fig.

2. It can be seen that the ratio between xc-inclutgbrt-  The authors acknowledge partial support by the University
dashed ling and xc-excludeddotted ling quadratic contri  of the Basque Country, the Basque Hezkuntza, Unibertsitate
butions to the energy loss is in excellent agreement with theta Ikerketa Saila, and the Spanish Ministerio de Edleacio

ratios reported in Ref. 12see Fig. 7 of this referent@s vy Cultura.
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