183 research outputs found

    The human visual system is optimised for processing the spatial information in natural visual images

    Get PDF
    AbstractA fundamental tenet of visual science is that the detailed properties of visual systems are not capricious accidents, but are closely matched by evolution and neonatal experience to the environments and lifestyles in which those visual systems must work [1–5]. This has been shown most convincingly for fish [6] and insects [7]. For mammalian vision, however, this tenet is based more upon theoretical arguments [8–11] than upon direct observations [12,13]. Here, we describe experiments that require human observers to discriminate between pictures of slightly different faces or objects. These are produced by a morphing technique that allows small, quantifiable changes to be made in the stimulus images. The independent variable is designed to give increasing deviation from natural visual scenes, and is a measure of the Fourier composition of the image (its second-order statistics). Performance in these tests was best when the pictures had natural second-order spatial statistics, and degraded when the images were made less natural. Furthermore, performance can be explained with a simple model of contrast coding, based upon the properties of simple cells [14–17] in the mammalian visual cortex. The findings thus provide direct empirical support for the notion that human spatial vision is optimised to the second-order statistics of the optical environment

    Summation of perceptual cues in natural visual scenes

    Get PDF
    Natural visual scenes are rich in information, and any neural system analysing them must piece together the many messages from large arrays of diverse feature detectors. It is known how threshold detection of compound visual stimuli (sinusoidal gratings) is determined by their components' thresholds. We investigate whether similar combination rules apply to the perception of the complex and suprathreshold visual elements in naturalistic visual images. Observers gave magnitude estimations (ratings) of the perceived differences between pairs of images made from photographs of natural scenes. Images in some pairs differed along one stimulus dimension such as object colour, location, size or blur. But, for other image pairs, there were composite differences along two dimensions (e.g. both colour and object-location might change). We examined whether the ratings for such composite pairs could be predicted from the two ratings for the respective pairs in which only one stimulus dimension had changed. We found a pooling relationship similar to that proposed for simple stimuli: Minkowski summation with exponent 2.84 yielded the best predictive power (r=0.96), an exponent similar to that generally reported for compound grating detection. This suggests that theories based on detecting simple stimuli can encompass visual processing of complex, suprathreshold stimuli

    Background matching and disruptive coloration as habitat-specific strategies for camouflage

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record.Data availability: All data for this study are included as a supplementary fileCamouflage is a key defence across taxa and frequently critical to survival. A common strategy is background matching, resembling the colour and pattern of the environment. This approach, however, may be ineffective in complex habitats where matching one patch may lead to increased visibility in other patches. In contrast, disruptive coloration, which disguises body outlines, may be effective against complex backgrounds. These ideas have rarely been tested and previous work focuses on artificial systems. Here, we test the camouflage strategies of the shore crab (Carcinus maenas) in two habitats, being a species that is highly variable, capable of plastic changes in appearance, and lives in multiple environments. Using predator (bird and fish) vision modelling and image analysis, we quantified background matching and disruption in crabs from rock pools and mudflats, predicting that disruption would dominate in visually complex rock pools but background matching in more uniform mudflats. As expected, rock pool individuals had significantly higher edge disruption than mudflat crabs, whereas mudflat crabs more closely matched the substrate than rock pool crabs for colour, luminance, and pattern. Our study demonstrates facultative expression of camouflage strategies dependent on the visual environment, with implications for the evolution and interrelatedness of defensive strategies.Biotechnology & Biological Sciences Research Council (BBSRC

    The Use of the Cancellation Technique to Quantify the Hermann Grid Illusion

    Get PDF
    When observers view a grid of mid-gray lines superimposed on a black background, they report seeing illusory dark gray smudges at the grid intersections, an effect known as the Hermann grid illusion. The strength of the illusion is often measured using the cancellation technique: A white disk is placed over one of these intersections and the luminance of the disk is reduced until the disk disappears. Its luminance at this point, i.e., the disk's detection threshold, is taken to be a measure of the strength of the illusion. Our experiments showed that some distortions of the Hermann grid, which were sufficient to completely disrupt the illusion, did not reduce the disk's detection threshold. This showed that the cancellation technique is not a valid method for measuring the strength of the Hermann grid illusion. Those studies that attempted to use this technique inadvertently studied a different effect known as the blanking phenomenon. We conclude by presenting an explanation for the latter effect

    Escape Distance in Ground-Nesting Birds Differs with Individual Level of Camouflage.

    Get PDF
    Camouflage is one of the most widespread antipredator strategies in the animal kingdom, yet no animal can match its background perfectly in a complex environment. Therefore, selection should favor individuals that use information on how effective their camouflage is in their immediate habitat when responding to an approaching threat. In a field study of African ground-nesting birds (plovers, coursers, and nightjars), we tested the hypothesis that individuals adaptively modulate their escape behavior in relation to their degree of background matching. We used digital imaging and models of predator vision to quantify differences in color, luminance, and pattern between eggs and their background, as well as the plumage of incubating adult nightjars. We found that plovers and coursers showed greater escape distances when their eggs were a poorer pattern match to the background. Nightjars sit on their eggs until a potential threat is nearby, and, correspondingly, they showed greater escape distances when the pattern and color match of the incubating adult's plumage-rather than its eggs-was a poorer match to the background. Finally, escape distances were shorter in the middle of the day, suggesting that escape behavior is mediated by both camouflage and thermoregulation.In Zambia we thank the Bruce-Miller, Duckett and Nicolle families, Collins Moya and numerous other nest-finding assistants and land-owners, Lackson Chama, and the Zambia Wildlife Authority. We also thank Tony Fulford and are grateful for the helpful comments provided by Tim Caro, Innes Cuthill, Daniel Osorio, and two anonymous referees. J.T., J.W-A. and M.S. were funded by a Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/J018309/1 to M.S., and a BBSRC David Phillips Research Fellowship (BB/G022887/1) to M.S., and C.N.S was funded by a Royal Society Dorothy Hodgkin Fellowship, a BBSRC David Phillips Fellowship (BB/J014109/1) and the DST-NRF Centre of Excellence at the Percy FitzPatrick Institute.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by University of Chicago Press

    Hoverflies use a time-compensated sun compass to orientate during autumn migration

    Get PDF
    This is the final version. Available on open access from the Royal Society via the DOI in this recordData accessibility: All data are provided as electronic supplementary material [59].The sun is the most reliable celestial cue for orientation available to daytime migrants. It is widely assumed that diurnal migratory insects use a ‘time-compensated sun compass’ to adjust for the changing position of the sun throughout the day, as demonstrated in some butterfly species. The mechanisms used by other groups of diurnal insect migrants remain to be elucidated. Migratory species of hoverflies (Diptera: Syrphidae) are one of the most abundant and beneficial groups of diurnal migrants, providing multiple ecosystem services and undergoing directed seasonal movements throughout much of the temperate zone. To identify the hoverfly navigational strategy, a flight simulator was used to measure orientation responses of the hoverflies Scaeva pyrastri and Scaeva selenitica to celestial cues during their autumn migration. Hoverflies oriented southwards when they could see the sun and shifted this orientation westward following a 6 h advance of their circadian clocks. Our results demonstrate the use of a time-compensated sun compass as the primary navigational mechanism, consistent with field observations that hoverfly migration occurs predominately under clear and sunny conditions.Royal SocietyNatural Environment Research Council (NERC)European Union Horizon 2020American Airforce Research Laboratory (AFRL)Bristol Centre for Agricultural Innovation (BCAI

    Honeybee linguistics—a comparative analysis of the waggle dance among species of Apis

    Get PDF
    All honeybees use the waggle dance to recruit nestmates. Studies on the dance precision of Apis mellifera have shown that the dance is often imprecise. Two hypotheses have been put forward aimed at explaining this imprecision. The first argues that imprecision in the context of foraging is adaptive as it ensures that the dance advertises the same patch size irrespective of distance. The second argues that the bees are constrained in their ability to be more precise, especially when the source is nearby. Recent studies have found support for the latter hypothesis but not for the “tuned-error” hypothesis, as the adaptive hypothesis became known. Here we investigate intra-dance variation among Apis species. We analyse the dance precision of A. florea, A. dorsata, and A. mellifera in the context of foraging and swarming. A. mellifera performs forage dances in the dark, using gravity as point of reference, and in the light when dancing for nest sites, using the sun as point of reference. Both A. dorsata and A. florea are open-nesting species; they do not use a different point of reference depending on context. A. florea differs from both A. mellifera and A. dorsata in that it dances on a horizontal surface and does not use gravity but instead “points” directly toward the goal when indicating direction. Previous work on A. mellifera has suggested that differences in dance orientation and point of reference can affect dance precision. We find that all three species improve dance precision with increasing waggle phase duration, irrespective of differences in dance orientation, and point of reference. When dancing for sources nearby, dances are highly variable. When the distance increases, dance precision converges. The exception is dances performed by A. mellifera on swarms. Here, dance precision decreases as the distance increases. We also show that the size of the patch advertised increases with increasing distance, contrary to what is predicted under the tuned-error hypothesis

    Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 108 (2011):9148-9153, doi:10.1073/pnas.1019090108.Camouflage is a widespread phenomenon throughout nature and an important anti-predator tactic in natural selection. Many visual predators have keen color perception, thus camouflage patterns should provide some degree of color matching in addition to other visual factors such as pattern, contrast, and texture. Quantifying camouflage effectiveness in the eyes of the predator is a challenge from the perspectives of both biology and optical imaging technology. Here we take advantage of Hyperspectral Imaging (HSI), which records full-spectrum light data, to simultaneously visualize color match and pattern match in the spectral and the spatial domains, respectively. Cuttlefish can dynamically camouflage themselves on any natural substrate and, despite their colorblindness, produce body patterns that appear to have high-fidelity color matches to the substrate when viewed directly by humans or with RGB images. Live camouflaged cuttlefish on natural backgrounds were imaged using HSI, and subsequent spectral analysis revealed that most reflectance spectra of individual cuttlefish and substrates were similar, rendering the color match possible. Modeling color vision of potential di- and tri-chromatic fish predators of cuttlefish corroborated the spectral match analysis and demonstrated that camouflaged cuttlefish show good color match as well as pattern match in the eyes of fish predators. These findings (i) indicate the strong potential of HSI technology to enhance studies 3 of biological coloration, and (ii) provide supporting evidence that cuttlefish can produce color-coordinated camouflage on natural substrates despite lacking color vision.We gratefully acknowledge financial support from the National Science Council of Taiwan NSC-98-2628-B-007-001-MY3 to CCC, from the Network Science Center at West Point and the Army Research Office to JKW, from the NDSEG Fellowship to JJA, and from ONR grant N000140610202 to RTH
    corecore