747 research outputs found

    Theory and simulation of spectral line broadening by exoplanetary atmospheric haze

    Full text link
    Atmospheric haze is the leading candidate for the flattening of expolanetary spectra, as it's also an important source of opacity in the atmospheres of solar system planets, satellites, and comets. Exoplanetary transmission spectra, which carry information about how the planetary atmospheres become opaque to stellar light in transit, show broad featureless absorption in the region of wavelengths corresponding to spectral lines of sodium, potassium and water. We develop a detailed atomistic model, describing interactions of atomic or molecular radiators with dust and atmospheric haze particulates. This model incorporates a realistic structure of haze particulates from small nano-size seed particles up to sub-micron irregularly shaped aggregates, accounting for both pairwise collisions between the radiator and haze perturbers, and quasi-static mean field shift of levels in haze environments. This formalism can explain large flattening of absorption and emission spectra in haze atmospheres and shows how the radiator - haze particle interaction affects the absorption spectral shape in the wings of spectral lines and near their centers. The theory can account for nearly all realistic structure, size and chemical composition of haze particulates and predict their influence on absorption and emission spectra in hazy environments. We illustrate the utility of the method by computing shift and broadening of the emission spectra of the sodium D line in an argon haze. The simplicity, elegance and generality of the proposed model should make it amenable to a broad community of users in astrophysics and chemistry.Comment: 16 pages, 4 figures, submitted to MNRA

    Dietary energy density and the performance characteristics of growing pigs

    Get PDF
    Optimal nutritional management of growing pigs is constrained by lack of quantitative information on the response of animals between 30 and 110 kg live weight to dietary energy content. Under 'ideal' conditions modern genotypes appear to adjust feed intake to maintain a constant DE intake over a much wider range of dietary energy concentrations than previously thought (Mullan et al, 1998). However, under commercial pen conditions, voluntary feed intake is lower, pigs respond in terms of both growth rate and feed conversion to dietary DE density considerably above the levels currently thought to maximise biological and economic responses. The present study was designed to provide information on the response of growing pigs to dietary energy content under ideal and commercial housing conditions for two growth periods 30-60kg liveweight and 60-100kg liveweight. The results of the pigs kept under individual (ideal) housed conditions were consistent with the literature in that they adjusted their voluntary feed intake with digestible energy density to maintain a constant energy intake. The results of the pigs kept in groups (commercial) housing conditions tended to increase their daily energy intake as the energy density of the feed increased. This increase in energy intake improved the growth rate of the pigs and increased the fat deposition of those pigs. Economic analysis of the experiments involving pigs in groups indicates that formulating diets to a least cost per megajoule of digestible energy is not the most profitable point to set the digestible energy density. Modelling programs need to be used to determine where the least cost per unit of growth of the pig occurs. This is the most economical digestible energy density to formulate too. This will have major impact on the cost of production of piggery operations as the cost of energy is the single most important parameter in the cost of producing a pig

    Dilaton thin-shell wormholes supported by a generalized Chaplygin gas

    Get PDF
    In this article, we construct spherical thin-shell wormholes with charge in dilaton gravity. The exotic matter required for the construction is provided by a generalized Chaplygin gas. We study the stability under perturbations preserving the symmetry. We find that the increase of the coupling between the dilaton and the electromagnetic fields reduces the range of the parameters for which stable configurations are possible.Comment: 14 pages, 6 figures. v3: typos correcte

    Lossy quantum defect theory of ultracold molecular collisions

    Get PDF

    Thin-shell wormholes with a generalized Chaplygin gas

    Get PDF
    In this article, spherically symmetric thin-shell wormholes supported by a generalized Chaplygin gas are constructed and their stability under perturbations preserving the symmetry is studied. Wormholes with charge and with a cosmological constant are analyzed and the results are compared with those obtained for the original Chaplygin gas, which was considered in a previous work. For some values of the parameters, one stable configuration is also present and a new extra unstable solution is found.Comment: 14 pages, 6 figures; v2: typos corrected and minor rewordin

    Humane risicobeoordeling in zicht : een inventarisatie van de mogelijkheden voor het optimaliseren van het gebruik van humane data bij de risicobeoordeling van chemische stoffen in de voeding

    Get PDF
    Het doel van deze studie was het identificeren van visies op het huidige risicobeoordelingsproces, het optimaliseren van het gebruik van humane data en de samenwerking tussen toxicologie en epidemiologie. Gegevens zijn verkregen middels 23 semigestructureerde interview

    Gravitationally Collapsing Shells in (2+1) Dimensions

    Get PDF
    We study gravitationally collapsing models of pressureless dust, fluids with pressure, and the generalized Chaplygin gas (GCG) shell in (2+1)-dimensional spacetimes. Various collapse scenarios are investigated under a variety of the background configurations such as anti-de Sitter(AdS) black hole, de Sitter (dS) space, flat and AdS space with a conical deficit. As with the case of a disk of dust, we find that the collapse of a dust shell coincides with the Oppenheimer-Snyder type collapse to a black hole provided the initial density is sufficiently large. We also find -- for all types of shell -- that collapse to a naked singularity is possible under a broad variety of initial conditions. For shells with pressure this singularity can occur for a finite radius of the shell. We also find that GCG shells exhibit diverse collapse scenarios, which can be easily demonstrated by an effective potential analysis.Comment: 27 pages, Latex, 11 figures, typos corrected, references added, minor amendments in introduction and conclusion introd

    Stress condensation in crushed elastic manifolds

    Full text link
    We discuss an M-dimensional phantom elastic manifold of linear size L crushed into a small sphere of radius R << L in N-dimensional space. We investigate the low elastic energy states of 2-sheets (M=2) and 3-sheets (M=3) using analytic methods and lattice simulations. When N \geq 2M the curvature energy is uniformly distributed in the sheet and the strain energy is negligible. But when N=M+1 and M>1, both energies appear to be condensed into a network of narrow M-1 dimensional ridges. The ridges appear straight over distances comparable to the confining radius R.Comment: 4 pages, RevTeX + epsf, 4 figures, Submitted to Phys. Rev. Let

    A highly-ionized region surrounding SN Refsdal revealed by MUSE

    Get PDF
    Supernova (SN) Refsdal is the first multiply-imaged, highly-magnified, and spatially-resolved SN ever observed. The SN exploded in a highly-magnified spiral galaxy at z=1.49 behind the Frontier Fields Cluster MACS1149, and provides a unique opportunity to study the environment of SNe at high z. We exploit the time delay between multiple images to determine the properties of the SN and its environment, before, during, and after the SN exploded. We use the integral-field spectrograph MUSE on the VLT to simultaneously target all observed and model-predicted positions of SN Refsdal. We find MgII emission at all positions of SN Refsdal, accompanied by weak FeII* emission at two positions. The measured ratios of [OII] to MgII emission of 10-20 indicate a high degree of ionization with low metallicity. Because the same high degree of ionization is found in all images, and our spatial resolution is too coarse to resolve the region of influence of SN Refsdal, we conclude that this high degree of ionization has been produced by previous SNe or a young and hot stellar population. We find no variability of the [OII] line over a period of 57 days. This suggests that there is no variation in the [OII] luminosity of the SN over this period, or that the SN has a small contribution to the integrated [OII] emission over the scale resolved by our observations.Comment: 5 pages, 4 figures, accepted for publication in A&
    • …
    corecore