Atmospheric haze is the leading candidate for the flattening of expolanetary
spectra, as it's also an important source of opacity in the atmospheres of
solar system planets, satellites, and comets. Exoplanetary transmission
spectra, which carry information about how the planetary atmospheres become
opaque to stellar light in transit, show broad featureless absorption in the
region of wavelengths corresponding to spectral lines of sodium, potassium and
water. We develop a detailed atomistic model, describing interactions of atomic
or molecular radiators with dust and atmospheric haze particulates. This model
incorporates a realistic structure of haze particulates from small nano-size
seed particles up to sub-micron irregularly shaped aggregates, accounting for
both pairwise collisions between the radiator and haze perturbers, and
quasi-static mean field shift of levels in haze environments. This formalism
can explain large flattening of absorption and emission spectra in haze
atmospheres and shows how the radiator - haze particle interaction affects the
absorption spectral shape in the wings of spectral lines and near their
centers. The theory can account for nearly all realistic structure, size and
chemical composition of haze particulates and predict their influence on
absorption and emission spectra in hazy environments. We illustrate the utility
of the method by computing shift and broadening of the emission spectra of the
sodium D line in an argon haze. The simplicity, elegance and generality of the
proposed model should make it amenable to a broad community of users in
astrophysics and chemistry.Comment: 16 pages, 4 figures, submitted to MNRA