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ABSTRACT 

DIETARY ENERGY DENSITY AND THE PERFORMANCE 
CHARACTERISTICS OF GROWING PIGS 

Optimal nutritional management of growing pigs is constrained by lack of quantitative information 

on the response of animals between 30 and 110 kg live weight to dietary energy content. Under 

"ideal" conditions modern genotypes appear to adjust feed intake to maintain a constant DE intake 

over a much wider range of dietary energy concentrations than previously thought (Mullan et al, 

1998). However, under commercial pen conditions, voluntary feed intake is lower, pigs respond in 

terms of both growth rate and feed conversion to dietary DE density considerably above the levels 

currently thought to maximise biological and economic responses. The present study was designed 

to provide information on the response of growing pigs to dietary energy content under ideal and 

commercial housing conditions for two growth periods 30-60kg liveweight and 60-100kg 

liveweight. 

 

The results of the pigs kept under individual (ideal) housed conditions were consistent with the 

literature in that they adjusted their voluntary feed intake with digestible energy density to maintain 

a constant energy intake. The results of the pigs kept in groups (commercial) housing conditions 

tended to increase their daily energy intake as the energy density of the feed increased. This increase 

in energy intake improved the growth rate of the pigs and increased the fat deposition of those pigs. 

Economic analysis of the experiments involving pigs in groups indicates that formulating diets to a 

least cost per megajoule of digestible energy is not the most profitable point to set the digestible 

energy density. Modelling programs need to be used to determine where the least cost per unit of 

growth of the pig occurs. This is the most economical digestible energy density to formulate too. 

This will have major impact on the cost of production of piggery operations as the cost of energy is 

the single most important parameter in the cost of producing a pig. 
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C h a p t e r  1  

GENERAL INTRODUCTION 

Optimal nutritional management of growing pigs is constrained by lack of quantitative information 

on the responses of animals between 30 and 110 kg live weight to dietary energy content using the 

newer genotypes housed under commercial conditions. Indeed, the dietary energy levels commonly 

recommended for pigs in Australia are based on the results of experiments with pigs housed in 

individual pens published in the late 1980's (Campbell and Taverner, 1986).   

1.1 The importance of dietary energy in feed formulation 

Feed accounts for 55-65% of the cost of producing a pig for market. The major limiting nutrient in 

feed is energy and thus it is the most important single factor in the cost of pigmeat production 

(Cole et al., 1971). Diet formulation is based on setting an energy density of the diet and then 

setting all other nutrients in relationship to the energy density. Therefore the major determinant of 

the cost of specific diets is energy density. The aim of diet formulation is to achieve the lowest diet 

cost that supports the maximal performance required to achieve desired carcass specifications. 

1.2 The context of the research study. 

The energy intake of the pig is determined by the concentration of available energy in the diet and 

the amount of that feed that is eaten. The concentration of available energy in the diet is a 

reflection of the chemical composition of the diet and the ability of the pig to extract that energy. 

The feed intake of the pig is affected by the requirement of the animal to maintain a balance of 

nutrients that is needed to maintain the pig and a certain level of performance within the 

environmental conditions (temperature, group size and disease status) in which the pigs are kept.  
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Under "ideal" conditions modern genotypes appear able to adjust feed intake to maintain a 

constant digestible energy (DE) intake over a much wider range of dietary energy concentrations 

than previously thought. However, under commercial conditions voluntary feed intake is lower and 

pigs respond in terms of both growth rate and feed:gain to dietary DE concentration considerably 

above the level(s) currently thought to maximize biological and economic responses. 

The computer modeling program describing pig growth in response to nutrients “Auspig” 

described by Black et al.(1986), is not particularly accurate at predicting the responses of pigs to 

dietary energy concentration and there is a real possibility that current decisions on the most 

appropriate dietary energy contents for growing pigs are based on inappropriate information. 

Considerable potential appears to exist with modern genotypes to further exploit their obvious 

potential for lean tissue growth and greater carcass gains by using higher energy diets.   

1.3 Development of proposed research program 

The objective of the studies reported in this thesis was to examine the performance of pigs to 

dietary energy content. The determinants of the energy requirements of the pig, the factors that 

influence feed intake and the interaction between feed intake and the energy requirements are 

reviewed. The experiments examine the response of grower (30-60 kg liveweight) pigs to DE 

density under ideal (experiment 1) and commercial (experiment 2) housing conditions. Experiments 

3 and 4 examine the same premise with older pigs ranging from 60-100 kg liveweight (finisher pigs). 

The results of the experiments were used to determine the economic implications of varying DE 

density in grower and finisher pigs diets, especially under commercial housing conditions.  
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C h a p t e r  2  

LITERATURE REVIEW 

2.1 Definitions of energy metabolism 

Definition of energy  

The basic unit of energy metabolism is the Joule. A joule is 107 erg, where 1 erg is equivalent to the 

amount of energy required to accelerate a 1 gram mass by 1 metre per second. 

Gross Energy (GE) 

Gross energy is the energy released on combustion, determined by measuring the amount of heat 

released upon combustion of the feed. Generally measured with adiabiatic Bomb calorimeter, GE 

is the maximum amount of energy available to the animal. It is dependent on proportions of 

carbohydrate, fat, protein, minerals and water in the feed. As water and minerals contribute no 

energy to the diet, GE can be predicted from the energy content of carbohydrate, fat and protein. 

Digestible Energy (DE) 

Digestible energy is the energy in the feed remaining after removing the gross energy in the faeces. 

It can be determined with pigs housed in metabolism crates by measuring gross energy intake and 

subtracting faecal gross energy output over a 5-7 day collection period. The intention of this 

measurement is to estimate the energy that is absorbed by the pig. 
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Metabolisable Energy (ME) 

Metabolisable energy is the digestible energy of the feed minus the gross energy of urinary and 

intestinal gaseous emissions. The gaseous emissions in the pig are often ignored, as they are small 

and not easily measured. The gross energy of the urine is usually considered relatively constant in 

balanced diets and is relative to the biological efficiency of feed intake relative to nitrogen retention. 

An excess of nitrogen in the feed, will increase urinary gross energy and thus the ratio of DE to ME 

will not remain constant. The Metabolisable Energy System of describing the energy in feeds is an 

estimate of the amount of energy that is available to the animal at a metabolic level. 

Net Energy (NE) 

Metabolisable Energy is divided into net energy and heat increment. Heat increment is the heat 

produced by the digestion and metabolism of nutrients and fermentation in the digestive tract 

(Ewan, 2001). The heat increment maybe used to maintain body temperature but is otherwise 

considered a loss of energy. The remaining net energy is used for maintenance (NEm) and net 

energy for productive purposes such as tissue synthesis, foetal development or milk synthesis. Heat 

production is the sum of the heat increment and net energy for maintenance. The NEm is affected 

by fasting heat production (FHP) of which up to 50% of the FHP is contributed by gut 

metabolism. 
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 GROSS ENERGY (GE) 

  FAECAL ENERGY (FE) 

 DIGESTIBLE ENERGY (DE) 

  URINARY ENERGY (UE) 

 METABOLISABLE ENERGY (ME) 

  HEAT INCREMENT (HI) 

 NET ENERGY (NE) 

  NET ENERGY-MAINTENANCE (Nem) 

 NET ENERGY-PRODUCTION (NEp) 

  

Figure 1.  The partitioning of feed energy in the pig. 

Methods of determining energy requirements of the animal have been by an empirical or a factorial 

approach. The empirical approach establishes requirements based on maximising performance in 

response to varying energy intake and is often used in experiments where growth measurements are 

used to assess the energy requirement of the animal. The factorial method is based on determining 

actual energy requirements for specific functions such as maintenance, growth and reproductive 

requirements. The factorial approach is conducive to the establishment of models of energy 

metabolism and is the most widely used approach to establishing the energy requirements of the 

animal 
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The ultimate aim of the study of energy metabolism is the partitioning of energy in the feed into the 

categories shown in Figure 1 and thus predicts the performance of the animal.  

The utilisation of energy in growing animals can be shown schematically (Figure 2). The energy 

retention is plotted against intake of metabolisable energy. This relationship is accepted as linear 

under the assumption that it is corrected for metabolic body weight (BW*), where * was originally 

estimated as 0.75 (Kleiber, 1965) but has been adjusted by Noblet et al., (1993) to a value of 0.6 

which better reflects today’s improved genotypes. The rate of energy retention per unit of 

metabolisable energy is shown as “k”. Under high physical activity the requirement of 

metabolisable energy is higher due to energy expenditure for activity that is not stored in the body. 

 

balance = 0

Fasting HP

Metabolisable 
Energy /BW0.6

Energy 
Retention 

high physical 
activity

k
1

ME

ME for 
maintenance

ME for growth

M

performance

 

Figure 2.  Energy retention in relation to the intake of metabolisable energy. 
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2.2 Energy for maintenance  

Energy for maintenance is the energy required by the animal to maintain the body at a constant 

weight.  It is measured by the fasting heat production in calorimetric studies. It is expressed as a 

proportion of body weight referred to as metabolic weight.  

Maintenance energy requirements can account for approximately one third of the total energy 

requirements of a growing pig (Black and de Lange, 1995; NRC, 1998). The major energy 

demanding processes include blood flow, respiration, ion balance, tissue turnover, animal activity, 

feed ingestion, excretion and actual deposition of nutrients. (Black and de Lange, 1995). 

The major determinant of maintenance energy is body weight; allometric functions have been used 

to describe the relationship (NRC, 1998). The effect of activity on maintenance energy is associated 

with eating as well as animal interactions and can account for 20% of the total maintenance 

requirement (Halter et al., 1980; Verstegen et al., 1987). The maintenance energy requirement is 

different for different genotypes due to differences in body composition in terms of fat, protein 

and visceral masses (Noblet et al., 1991). Due to the relatively inexpensive energy cost of 

maintaining fat and the higher cost of maintaining protein, Whittemore (1983, 1993) has suggested 

that maintenance energy requirements are better expressed relative to body protein mass. Yen 

(1997) noted that protein in visceral mass was metabolically more energy expensive than skeletal 

muscle thus suggesting that maintenance energy requirement can be further refined. There is some 

evidence that visceral size is different between genotypes (Koong et al., 1983; de Greef et al., 1994; 

Bikker et al., 1996a; Quiniou and Noblet, 1995; van Milgen et al., 1998), which may explain some of 

the variation between genotypes. 

Maintenance energy requirements estimated from measurements of fasting heat production may 

vary from the heat production of the normal animal due to difference in activity levels, length of 

the fast and previous nutritional history. 
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Maintenance requirements can be broken down into its components of fasting heat production 

(FHP), activity heat production (AHP) and thermic effect of feed (TEF). Heat increment of feed is 

the addition of AHP and TEF. Total heat production and the relative proportions vary with 

genotype (Noblet et al., 1997). Fasting heat production ranges from 53 to 65% of total heat 

production with heat energy loss associated with activity contributing only 5% of total heat 

production in calorimetry trials. The remaining heat production was associated with TEF (Noblet 

et al., 1997). Heat production is measured in a respiratory chamber and may underestimate the heat 

production of activity although it is unlikely to account for any significant percentage of the total 

heat production under normal conditions (J.L. Black 2000 pers comm.). 

Metabolisable energy requirements for maintenance can be estimated from fasting heat production. 

Estimates of MEM =1.15 to 1.20 MJ/kg BW0.60 (Noblet et al., 1997). FHP is higher for leaner 

genotypes than expected due to the higher ratio of lean to fat content (Tauson et al., 1997).  

Increasing the ambient temperature above the thermoneutral zone for pigs increases the heat 

production significantly if feed intake is maintained; up to 56% in some breeds at 40°C (Tauson et 

al., 1997). However, feed intake will fall at temperatures above the thermoneutral zone and reduce 

overall heat production. 

The effect of pleuropneumonia on maintenance energy was examined by Bray et al., (1997). The 

reduction of feed intake due to the pleuropneumonia was not associated with a reduction in oxygen 

consumption, indicating a reduction in energy utilization for weight gain. These changes suggest an 

increase in the maintenance requirement of the animal due to disease. 

Maintenance energy is generally considered as a proportion of bodyweight and can be affected by 

the factors outlined above. To remove some of the genotype influences on calculation of 

maintenance energy van Milgen et al., (1997) suggested that this effect could be removed by 
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expressing maintenance energy as a function of muscle, viscera and fat content of the body. They 

suggested the following equation: 

 Maintenance Energy (KJ/d)= 457(muscle)0.81 + 1969(viscera)0.81 – 644(fat)0.81. 

For lean genotypes where fat content is a smaller component of the overall body composition they 

suggested the following equation. 

 Maintenance Energy (KJ/d)= 508(muscle)066 + 2011(viscera)0.66 

In the same experiments it was shown that the energetic cost of activity during fasting was 

allometrically associated with muscle mass rather than total body mass, thus removing the genetic 

component of this calculation.  

2.3 Energy for growth and development 

The energy required for growth and development is associated with the increase in body mass due 

to an accumulation of protein, fat and ash. Once the energy for maintenance is satisfied further 

increases in energy intake are used for protein and fat deposition in growing pigs.  In terms of 

analysis one gram of protein contains 23.439 KJ of gross energy and one gram of fat contains 

39.344 KJ of gross energy.  

2.3.1 Energy for protein metabolism 

The energy required to deposit 1g of protein, not including energy in the protein =54.0 KJ (Noblet 

et al., 1999). Protein turnover is the reason for the higher energy requirement for protein deposition 

than for fat deposition. Biochemically, deposition of protein creates a greater amount of heat that is 

subsequently lost (Millward et al., 1976). 

Protein requires 23.439 + 54 = 77.439 KJ of energy from the diet to deposit one gram of protein. 

One gram of protein requires 4 g of water and results in 5 g of tissue, thus 77.429 * 0.2=15.48 KJ 
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to deposit 1 g of protein tissue.   The efficiency of energy deposition is different depending on what 

tissue is being deposited and the stage of life of the pig (Close et al., 1971). 

Body protein deposition increases linearly with increased energy intake until maximum protein 

deposition is reached after which no further protein deposition occurs (Campbell and Taverner 

1988; Bikker et al., 1995,1996a,1996b; Quiniou et al., 1995, 1996a, 1996b). Maximum body protein 

deposition is essentially a function of genotype and age although it can be modified significantly by 

environmental and dietary factors (Black et al., 1995; Moughan et al., 1995). 

2.3.2 Energy for Fat metabolism 

The energy required to deposit 1 g of fat, excluding energy of the fat =46.88 KJ (Noblet et al., 

1999). One gram of fat requires 0.2 grams of water and results in 1.2 grams of tissue.  Thus it 

requires 39.344+46.88 =86.224/1.2=71.85 KJ of energy to deposit one gram of fat tissue.  

2.4 Voluntary feed intake 

2.4.1 Classical theories of intake control. 

The first theory involving the mechanisms controlling feed intake was proposed by Brobeck (1948), 

who suggested the thermostatic theory of intake; animals eat to keep warm and quit eating to 

prevent hyperthermia. The anterior hypothalamus is the most important temperature sensor in the 

body and heating or cooling of this area will affect heat loss or production and therefore control 

feed intake. Ingram (1968) noted a positive relationship between hypothalamic temperature and 

food intake in pigs but work in other species (Baile and Mayer, 1968; Dinius et al., 1970) showed 

that this was related to excitement rather than to ingestion and usually subsided before the end of 

the meal. Overeating increases heat production and heat loss mechanisms are activated to prevent 

hyperthermia rather than a reduction in intake. However, when there is no further mechanisms 

available to reduce heat loss the animal will reduce its voluntary feed intake to prevent an increase 
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in core body temperature above 39.3°C. This is the basis of the upper evaporative limit to the 

thermoneutral zone of comfort for the pig (Giles and Black, 1991) 

The first objective scientific study on mechanisms involved in controlling feed intake was carried 

out by Mayer (1953). He proposed the glucostatic theory of feed intake control which revolved 

around the animal attempting to maintain a constant level of glucose in the blood by a central 

nervous monitoring system. This mechanism and gut capacity are likely to exert short-term control 

of intake through manipulation of meal size and frequency.  

Kennedy (1953) postulated that central nervous system monitoring of fat depots would control the 

intake of animals over an extended period: the lipostatic theory. The domestic pig may become 

grossly overweight and the feedback signals associated with the lipostatic theory appear to be 

significantly reduced in the pig, which is likely a response of genetic selection (Forbes, 1995). 

Booth (1972) modified the glucostatic theory to say that the rate of glucose utilisation was the 

controlling factor on feed intake. Russek (1976) showed that the liver as well as the brain is 

sensitive to glucose. Shimizu et al. (1983) suggested that the liver was the metabolic sensor for the 

brain.  

The CNS has a central role in the control of feed intake. Stephens (1980, 1985) showed that there 

are specific glucose receptors in the duodenum that are associated via a neural link to the central 

nervous system. Houpt (1983a, 1985) showed that osmotic and stretch receptors in the duodenum 

have CNS neural linkages. 

The hormonal milieu involved in the regulation of intake has been extensively examined in many 

species and pigs are no exception. Exogenous insulin has been shown to increase intake in young 

pigs 6 hours after injection (Houpt and Houpt, 1977). This is certainly expected considering the 

role of insulin in the control of blood glucose concentration. Increased levels of growth hormone 
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have been shown to decrease feed intake although this may be related to the better utilisation of 

nutrients in the body. Adrenaline has been shown to depress intake (Langhans et al., 1985) although 

this is related to abnormal behaviour, including termination of feeding (Hinton et al., 1987).  

A variation on the lipostatic theory has been developed by Martin et al., (1989) who suggested that 

feed intake is regulated by the ability of blood metabolites to be incorporated into adipocytes. 

When adipose cells grow to a certain size they release fatty acids into the circulation, which is 

detected by the brain, and feed intake is decreased. Leptin is released from adipocytes and maybe 

associated with this theory (Houseknecht et al., 1998).  

Cholecystokinin (CCK) is the most extensively studied of the hormones that are associated with 

feed intake. This hormone is secreted from the gut and secretion is increased during feeding. The 

effect of CCK in pigs is still not defined precisely as it is thought to reduce stomach emptying by 

constriction of the pylorus but Rayner et al (1991) showed that CCK caused feed depression via 

other mechanisms. It is postulated (Houpt, 1983b) that the site of action of CCK is the upper 

intestine although infusions of tryptophan increase plasma CCK but there was no effect on feed 

intake (Rayner and Gregory, 1985). Most of this early work involved the use of antagonists to CCK 

or artificially high levels of CCK that may have caused a general malaise in the pig (Baldwin et al., 

1983). Recent work involving immunisation against CCK (Pekas and Trout, 1993) showed an 

increase in intake by 8.2% and growth by 10.6%. Thus CCK may play a role in controlling feed 

intake at normal physiological levels. 

Other gut hormones that may exert some influence on feed intake include somatostatin, bombesin 

(Baile et al., 1983) and neuropeptide Y and peptide YY (Parrot et al., 1986). Opioid peptides may 

also influence feed intake (Baldwin et al., 1990) although this is likely a behavioural response rather 

than a physiological response. In addition the steroid hormones play a major role in feed intake as 



 

13 

can be seen by differences in feed intake between males, females and castrated males (Jordon et al., 

1965).  

2.4.2 Sex of the animals 

Estimations of the increased intake of castrates compared to male pigs range from 7 to 32% 

(Walstra, 1969; Houseman, 1973; Sparkes, 1982). Gilts tend to eat a similar amount to castrates and 

7% greater than male pigs (Houseman, 1973; Sparkes, 1982). This suggests that the digestible 

energy intake of castrates is higher than gilts, which in turn is higher than males. This is in reverse 

to the protein deposition capacity of the different sexes which tends to refute the lipostatic 

mechanism of feed intake control as the fat deposition of castrates is higher than gilts and males. 

2.4.3 Manipulation of carcass quality by control of feeding. 

In general pigs fed ad libitum grow faster than pigs offered a restricted feed regime but have an 

increased feed:gain and carcass fat content (Cole et al., 1971). The increase in feed:gain refered to 

by Cole et al., (1971) occurred because energy intake exceeded that required for maximum protein 

deposition. Selection for increased growth and reduced fatness since 1971 has resulted in voluntary 

energy intake for pigs under 100kg liveweight below that required for maximum protein deposition 

(R.G. Campbell, unpublished). Feeding systems developed in the 1990’s have all been aimed at ad 

libitum feeding due to the improvement in genetics and the desire to achieve maximum liveweight 

and protein gains.   

2.4.4 Environmental constraints on feed intake 

The temperature at which feed intake is depressed is dependent on the weight and relative 

insulation properties or fat proportion of the animal to maintain core body temperature. In practice 

a wide range of environmental factors including skin wetness, humidity, air quality and satiety of the 

animal affects the relationship between feed intake and ambient temperature. Close (1989) reviewed 
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the literature and developed the equation relating body weight, environmental temperature and 

Metabolisable Energy intake. 

 MEI = 9.6 + 0.075ET+0.52BW-0.012ET x BW 

MEI = Metabolisable Energy Intake per day (MJ/day), ET is environmental temperature (oC) and 

BW is Body weight (kg). 

The increase in feed intake seen under cold conditions does not overcome any significant growth 

retardation but they may increase growth rate above pigs kept at higher temperatures (Holme and 

Coey 1967). The increase in feed intake below lower critical temperature is greater in individually 

housed animals as pigs in groups tend to huddle and feeding bouts are reduced (Giles and Black,  

1991). 

Close et al., (1971) showed that there was a rise in water to dry matter intake ratio between 2.7 to 

4.3 kg/kg DM with increasing ambient temperature. Barber et al., (1991) identified a component of 

water intake associated with feed intake with the water intake being 89% of the weight of the feed 

eaten with the rest of the water intake associated with water intake between feeding bouts.  

Summer tends to reduce growth rates and is associated with reduced feed intakes and is dependent 

on housing conditions in terms of capacity to maintain lower temperatures (O’Doherty and 

McKeon, 2000). The seasonal effects tend to effect the carcass measurements rather than measured 

live performance as metabolism changes (O’Doherty and McKeon, 2000). 

2.4.5 Group Size 

Group size and stocking density have a significant impact on feed intake. Stocking rate can have the 

major effect on intake as shown by Kornegay and Notter (1984) where feed intake was reduced by 

50g per day with each reduction of 0.1m2 in space allowance. Recommendations on space 

allowance for optimum feed intakes have been set by NRC (1987) and are 0.6 m2 for pigs 25-60kg 
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liveweight and 1.0 m2 for pigs over 60 kg liveweight. As group size increased from three to twelve 

pigs feed intake decline by 10% despite the maintenance of space allowance (Heitman et al., 1961).  

Increase in pigs per feeder space from 13 to 16 with a concomitant increase in stocking density 

from 0.78 to 0.65 m2 per pig reduced feed intake by 5% for pigs’ 38 to 65 kg liveweight and 10% 

for pigs’ 65 to 100kg liveweight (O’Doherty and McKeon, 2000). The difference in feed intake 

resulted in significant differences in daily energy intake and daily gain. The reduced intake was 

associated with an improved feed conversion. Petherick (1983) suggested an area of 0.047m2/W0.67 

is required for all pigs to lie on there side. Black (1995) reported that feed intake is depressed once 

floor space falls below 0.35 m2/W0.67 and declines in a linear manner from this point. Changing 

stocking density has been shown to significant effect growth rate of pigs primarily through 

reduction in feed intake (Jensen et al., 1973; Kornegay et al., 1993; Brumm and Miller, 1996). 

Social interaction with another pig reduces feed intake regardless of stocking density. Increasing the 

number of pigs from 1 to 5 reduces feed intake by 8 to 10% (Chapple, 1993). It appears from the 

literature and commercial production that group sizes of pigs above 5 pigs/pen do not have a direct 

effect on feed intake when stocking density is kept constant at adequate levels (Petherick et al., 

1989; Gonyou et al, 1992; de Haer and de Vries, 1993; Nielsen et al., 1995). Feeding pattern plays a 

major role in the difference in intake between individually housed pigs and group housed pigs. Pigs 

housed in individual pens spend more time eating than group housed pigs. However, in larger 

groups, pigs compensate for a lack of feeding time or space by eating fewer, larger meals (de Haer 

and de Vries, 1993).  

2.4.6 Disease 

The general response to disease and fever is a reduction in voluntary feed intake as the body strives 

to lower its core temperature. This is a generalised reaction in all mammals and is a protection 

mechanism. The level of feed reduction is very dependent on the type of disease that is being 

experienced and if it is a chronic or acute problem. An acute disease elicits an immune response 
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and fever that results in an anorexic effect (Klasing and Johnson, 1991; Koutsos and Klasing, 

2001). This reduction in intake can be total for short periods of time following a pneumonia 

challenge (Bray, 1996). A chronic disease situation appears to reduce feed intake via a mechanism 

associated with a decline in arterial oxygen supply (Bray, 1996). 

Disease is a potent manipulator of feed intake with the direct mechanism associated with immune 

stimulation and oxygen supply and the interaction with energy density is as yet untested in the 

scientific literature. 

2.4.7 Appetitie of individuals versus grouped pens. 

Experiments examining feeding behaviour of pigs in groups versus those in individual housing by 

De Haer and Merks (1992) showed that there was longer feeding times of larger meals with pigs in 

groups. This behaviour was modified when pigs were kept in the same environment for longer 

periods to that closer to individuals. This meal effect in group-housed pigs may lead to an 

asynchrony of nutrient availability to the animal. 

2.4.8 Appetite as a consequence of gut capacity 

The physical limit to the capacity of the pig gut has not been explored in any direct experiments but 

indirect experiments on diet dilution has shown that baby pigs do have a limit in which they can 

compensate for this diet dilution (Wangsness and Soroka, 1978; Pekas 1983). A confounding factor 

involved in determining the gut capacity is the rate of passage of the feed from the stomach into 

the intestine and then expelled as faeces. Gregory et al., (1987) showed that infusion of fat or 

glucose into the stomach did not reduce feed intake and they concluded that the rate of gastric 

emptying influenced the meal size. Unpublished work by King et al., (2000) showed that the 

inclusion of lupins into the diet reduced gastric emptying and had a major impact on the 

measurement of DE and NE.  
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2.5 Integrative theories of feed intake control. 

The development of more integrative theories to describe feed intake was recognised by Balch and 

Campling in 1962. They looked at hypotheses that had been established and noted that they did not 

predict how feed intake is controlled under all circumstances. From this integrative models were 

developed which involved all the factors identified as affecting feed intake. Most single factor 

models agree that feed intake is related to energy requirement of the animal. As yet there is no 

evidence that energy is measured directly within the body and thus intake is adjusted to maintain an 

energy status in the body. The body does partition the nutrients that are absorbed and excess 

energy is deposited as fat stores in the body. Le Magnen (1976) has shown that energy supply to 

some tissues is monitored and used to control feed intake and Booth (1979) indicated that the rate 

of use or supply of energy by cells is critical. It appears that meal size is dictated by more peripheral 

mechanisms of stomach and intestinal distension, delivery of nutrients to the liver with central 

nervous system control and thus a faster acting mechanism (Le Magnen and Devos 1984). The 

frequency of feeding may be more under the control of post absorptive or metabolic factors such 

as continued delivery of energy and other nutrients to the liver resulting in changes of the hormonal 

milieu (Stricker and McCann 1985). Forbes (1995) suggests that many of the mechanisms that have 

been looked at are additive in nature rather than exclusive and as such may involve extending some 

mechanisms such as the intestinal distension when other mechanisms such as protein nutrition are 

at an optimum. The interaction of the all the factors involved in feed intake will only be handled by 

very complex modeling systems that need to be developed to answer some of the questions relating 

to the interactions. 

2.6 Manipulation of energy density 

The manipulation of the energy density of the diet and its effect on subsequent performance of the 

pig has received little attention due to the belief that pigs could compensate for a change in energy 

density of the diet by adjusting feed intake to compensate and thus maintain a constant digestible 
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energy intake per day. Cole et al., (1967) was the first to examine the effects of increasing energy 

density of the diet on pig performance. This experiment used castrated pigs in individual pens 

allowed ad libitum access to pelleted diets ranging from 12.4 MJ DE/kg to 16.37 MJ DE/kg over a 

liveweight range of 38 to 105 kilograms. The results of the trial showed that the pigs adjusted their 

voluntary feed intake to maintain a constant level of daily digestible energy intake. Thus there was 

no physical limitation on the pigs ability to adjust food intake to maintain daily energy intake. Cole 

et al., (1967) also noted that when the pigs were kept in metabolism crates there daily energy intake 

was significantly less than when the animals were kept in individual holding pens. The reduction in 

energy intake was constant across treatments and as such is likely to be a reduction in the energy 

required by the pigs via a lower maintenance requirement with the reduced activity although they 

also grew significantly slower. In a subsequent experiment (Cole et al., 1969) a diet of very low 

energy density (11.1 MJ DE/kg) was compared to a standard diet of 14.2 MJ DE/kg there was a 

reduction in energy intake per day from 44.3 to 41.9 MJ DE per day. There was a resultant 

reduction in growth rate and fat deposition. From these experiments Cole et al., (1971) concluded 

that pigs ate for a constant intake of digestible energy intake per day except where physical 

limitations effect feed intake. Low energy diets will limit total intake due to the maximum physical 

capacity or an under filled stomach in very high-density diets can allow higher levels of digestible 

energy per day to be consumed.  

Owen and Ridgman (1967) used a lower range of digestible energy densities from 10.3 to 14.1 MJ 

DE/kg and showed that there was only a slight increase in feed intake with increasing nutrient 

density for pigs less than 50 kilograms but was significantly greater for pigs greater than 50 

kilograms. Therefore bodyweight and gut capacity play a large role in the ability of the pig to adjust 

to energy density of the diet with pig less than 50kg less likely to adjust intake in response to 

changes in nutrient density. They also showed in later work (Owen and Ridgman 1968) that a two 
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week compensatory period was required to demonstrate changes in feed intake to the differences in 

nutrient density of the feed.  

McCracken et al., (1997), showed that there was no significant effect of dietary energy density on 

the ME intake or Empty body gain for male and female crossbred pigs from 22 to 46 kg when 

housed in individual pens. The energy density range was 12.4 - 15.4 MJ of DE/kg. In association 

with the increase in energy density, total body dry matter, fat and energy percent increased. Protein 

gain was constant (152 g per day) across treatments with fat gain significantly increasing from 96 to 

126 g per day. Dry matter and energy digestibility of the diets significantly increased as the energy 

density of the diet increased. As energy density increased there was a non-significant (p<0.07) 

decline in heat production, which accounts for the extra energy retention. Water retention declined 

as the fat deposition increased.   

In modifying the digestible energy density of pig diets the fat and crude fibre components of the 

feed are the components often manipulated. As the ratio of fat to crude fibre increases the 

digestible energy density of the diet increases. The use of fats in pig diets was extensively reviewed 

by Wiseman (1994). In general the digestibility of fats is affected by the composition of the fat in 

terms of the fatty acid chain length and degree of saturation. The level of free fatty acids can 

influence the energy content of the fat as well. Crude fibre is an imprecise nutritional term and is 

more a reflection of analytical procedures rather than any discrete nutrient. The concept of crude 

fibre reducing the energy density of the diet is due to the relative indigestibility of fibre and thus the 

monogastric animal cannot extract much energy from this portion of the feed.  

 Forbes (1995) concluded that in the pig adjustment of feed intake to dietary energy density may 

not be complete, resulting in increased daily DE intake.  
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Figure 3.   Summary of the effects of the energy density of food on the 
voluntary intake by pigs from 5 to 30kg ( ) and from 30 to 100 kg 
( ) (NRC 1987, Forbes 1995) 

Figure 3 shows a summary of trials compiled by the NRC (1987) showing the relationship between 

energy density of the feed and digestible energy intake for growing pigs. There is a positive 

relationship up to 14 MJ DE/kg and constant for energy densities greater than 14MJ DE/kg. This 

positive relationship is related to the physical limitations of the digestive tract especially at very low-

density diets (Cole et al., 1971). Cole et al., (1971) also suggested that with very high energy density 

diets (above those in figure 3) a physical response is also seen in that there is an inadequate gut fill 

that results in a stimulus to increase feed intake, a minimum gut fill signal. This would result in an 

increase in daily digestible energy intake. These physical limitations and their affects are 

schematically represented in Figure 4.  
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Figure 4.  Schematic representation of the effect of nutrient density on feed 
and energy intake.   (Adapted from Cole et al., 1971). 

The results of some recent work from the USA (Stein and Easter, 1996) on finisher pigs fed ad 

libitum in a commercial group penned environment concluded that it is possible to modify the daily 

energy intake of the pig and the resultant growth composition (Table 1). Feeding lower energy diets 

reduced daily energy intake and also fat deposition more than protein deposition. 

Table 1.          The responses of finisher pigs housed in group pens to dietary energy 

density between 54 and 112 kg liveweight (Stein and Easter, 1996). 

 ME Density (MJ/kg) 

 11.3 12.1 12.9 13.8 14.7 

Daily gain (g/d) 872 931 1006 1038 1017 
Feed Intake (kg/d) 2.91 3.28 3.36 3.23 3.31 

Feed:Gain 3.84 3.44 3.33 3.12 2.81 

ME intake (MJ/d) 32.9 39.7 43.3 44.6 48.7 

Dressing Percentage 73.51 73.96 74.56 74.9 75.97 

Carcass P2 fat depth 17.5 17.8 19.8 21.8 21.6 
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There was a curvi-linear increase in daily ME intake from 32.9 to 48.7 MJ with an increase in dietary 

ME density from 11.3 to 14.7 MJ/Kg. This suggests that there may be a group size by dietary 

energy density interaction with ME intake as this relationship is not seen in pigs housed in 

individual pens. 

2.7 Summary 

This review has shown that the general theory of how a pig responds to the energy density of the 

diet is based on the pig manipulating its voluntary intake to maintain a constant daily digestible 

energy intake. There is variation, however, at the extremes of dietary energy density due to either 

high fibre levels at the lower energy density or high fat levels at higher energy densities. This theory 

has been based on observations of pigs generally housed in individual pens. The impact of housing 

pigs in groups is a reduction in voluntary feed intake. Despite this difference in voluntary feed 

intake between group and individual housed pigs the concept of constant daily energy intake is 

considered valid, but has not been tested experimentally. 
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C h a p t e r  3  

EFFECT OF ENERGY DENSITY ON THE PERFORMANCE 
CHARACTERISTICS OF GROWER PIGS  

3.1 INTRODUCTION 

The growing trend towards development of greater efficiency in all phases of pig production is vital 

to the continued profitability of the industry. The nutrition of the pig is no exception to this 

philosophy and is in a process of continual refinement of dietary specifications to produce the most 

cost effective result in terms of pig response to intake of nutrients. The most important single 

nutrient in the diet is the energy level of the diet as this is the major determinant of the cost of the 

diet and thus the profitability of pig production. The housing of pigs in modern pig production is 

predominantly in groups ranging from 10 to 1000 pigs per pen. The setting of the optimum energy 

density of the diet has been related to the least cost per megajoule of digestible energy which is a 

result of the theory that the pig will adjust intake to ensure a constant daily energy intake. Recent 

findings by Stein and Easter (1996) suggest that this relationship is not consistent when pigs are 

housed in group situations. The following experiments were conducted to test the hypothesis that 

energy intake is associated with an interaction between pigs housed under ideal and commercial 

(group-housed) conditions and different dietary energy densities.  

3.2 METHODS 

The investigation of energy density for growing pigs was undertaken in two experiments. The first 

experiment was undertaken in individual pens. The second experiment was undertaken in group 

pens under commercial conditions. 
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3.2.1 Experiment 1 – Individually housed grower pigs 

The experiment was designed as a two by six factorial with the factors being sex (male and female) 

and six dietary energy density (12.5, 13, 13.5, 14.0, 14.5, 15.0 MJ DE/kg) treatments. Eight male 

and eight female pigs, 9 weeks of age and 30kg±2kg were randomly assigned to each dietary energy 

treatment. The pigs were a synthetic commercial crossbred genotype and were housed in individual 

pens measuring 1.5m by 1 m. The composition and calculated analysis of the formulated diets is 

shown in Table 2. Diets were formulated to the same available lysine to digestible energy ration of 

0.69g/MJ. All other amino acids were maintained at a ratio to lysine based on commercial ratios 

employed by Bunge Meat Industries. Auspig computer modeling was used to confirm diets were 

adequate in all amino acids for pigs of 30 kg liveweight. All diets were pelleted at a commercial 

feedmill. The experiment was conducted over a six-week period during August to October at 

Bunge Meat Industries Ltd research and development facility, Corowa. Each pig was individually 

weighed at the beginning and the end of the experiment. Feed intake was recorded on a weekly 

basis but reported on a sectional basis. A real time ultrasound fat depth measurement at the P2 site 

(located 6 cm from the mid line of the back of the pig adjacent to the last rib) was taken at the start 

of the experiment and again at the end of the experiment (6 weeks). The pigs were then slaughtered 

as per normal commercial practices at the Bunge Meat Industries abattoir. Carcass weight was 

recorded as head on hot standard carcass weights. Fat depth measurements at the P2 site of the 

carcass were recorded by a Hennesy Chong probe.  

3.2.2 Statistical Analysis 

The effect of energy density and sex on growth rate, feed conversion efficiency and feed intake for 

each experimental period was determined using the General Linear Model Univariate procedure of 

SPSS for windows version 10.   Linear and Quadratic effects of energy density on growth rate, feed 

conversion efficiency and feed intake for each experimental period was determined using the Curve 

Estimation procedure from SPSS for windows version 10. 



 

25 

Table 2.       Composition of the diets A to F in Experiment 1.   

RAW MATERIAL  A B C D E F 
        
WHEAT % 5.000 10.000 23.500 30.000 46.067 55.750 
BARLEY  % 60.7667 50.650 31.100 22.000 5.000 5.000 
LUPIN KERNELS % 8.000 17.350 25.000 25.000 25.000 25.000 
MILLMIX % 10.000 5.000 5.000 5.000 5.000  
CANOLA MEAL % 8.000 8.000 8.000 8.000 8.000  
MEATMEAL % 1.200 0.750 1.433 1.000 1.000 3.000 
FISHMEAL % 3.967 5.750 4.000 5.300 5.400 6.250 
TALLOW %    1.750 2.500 3.250 
SALT % 0.200 0.200 0.200 0.200 0.200 0.200 
LIMESTONE % 1.600 1.300 0.700 0.700 0.700 0.700 
PALFOSS % 0.733 0.700 0.733 0.750 0.733 0.250 
LYSINE % 0.250 0.080 0.113 0.100 0.143 0.260 
METHIONINE % 0.027 0.005 0.034 0.030 0.044 0.065 
THREONINE % 0.087 0.005 0.003  0.060 0.100 
PREMIX † % 0.200 0.200 0.200 0.200 0.200 0.200 
        
CALCULATED 
ANALYSIS ‡        

           
DRY MATTER % 90.08 90.13 90.17 90.31 90.42 90.65 
DIGESTIBLE ENERGY MJ/KG 12.63 13.11 13.61 14.16 14.61 15.13 
CRUDE PROTEIN g/kg 166.10 192.50 205.50 210.00 212.00 206.00 
CRUDE FAT g/kg 34.70 39.20 42.70 60.00 67.30 70.00 
CRUDE FIBRE g/kg 53.00 47.70 43.40 40.60 36.20 24.80 
ASH g/kg 67.10 63.80 57.80 57.10 55.20 50.50 
CALCIUM g/kg 11.80 10.80 9.00 9.10 10.00 9.10 
AV.PHOSPHORUS  g/kg 4.00 4.00 4.00 4.10 4.10 4.10 
TOTAL PHOSPHORUS g/kg 6.60 6.40 6.40 6.40 6.40 5.80 
LYSINE g/kg 10.20 10.50 10.90 11.20 11.50 11.80 
AVAILABLE LYSINE g/kg 8.90 9.00 9.30 9.60 9.90 10.30 
METHIONINE g/kg 3.10 3.20 3.40 3.50 3.60 3.60 
METH+CYSTEINE g/kg 6.20 6.60 6.80 7.00 7.10 6.70 
THREONINE  g/kg 6.90 7.10 7.40 7.50 7.70 7.90 
ISOLEUCINE g/kg 6.60 8.10 8.70 9.00 9.00 8.60 
TRYPTOPHAN g/kg 2.10 2.40 2.50 2.60 2.60 2.40 
AVAILABLE LYSINE/ 
DIGESTIBLE ENERGY g/MJ 0.70 0.70 0.68 0.68 0.68 0.68 
SALT g/kg 4.20 4.60 4.20 4.50 4.50 5.00 
†provided the following nutrients: vitamin A-7.5miu/kg, vitamin D3-1.5miu/kg, vitamin E-35 

mg/kg, Niacin-15mg/kg, Ca-D-Pantothenate-7mg/kg, Riboflavin- 2.2mg/kg, vitamin B12-
10000mg/kg, Selenium 0.25mg/kg, copper-180mg/kg, iron-110mg/kg, Manganese-25mg/kg, 
Zinc-120mg/kg, Iodine-0.2mg/kg. 

‡Diet composition calculated on the basis of chemical composition of ingredients from Bunge 
Meat Industries database. 
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3.2.3 Experiment 2 – Group housed Grower pigs 

The experiment was designed as a three treatment randomized complete block design with three 

dietary energy densities (13, 14, 15 MJ DE/kg). Two hundred and forty male pigs, 10 weeks of age 

and 25±3kg liveweight were randomly assigned to each dietary energy treatment (Table 7). Pigs 

were a synthetic commercial crossbred genotype. The pigs were housed in group pens of 10 

animals per pen; each pen measuring 2.5m by 3 m. The composition and calculated analysis of the 

formulated diets is shown in Table 3. Diets were formulated to the same available lysine to 

digestible energy ration of 0.71 g/MJ. All other amino acids were maintained at a ratio to lysine 

based on commercial ratios employed by Bunge Meat Industries. All diets were pelleted at a 

commercial feedmill. The experiment was carried out over a six-week period during the spring 

months. Pigs were individually weighed at the beginning of the experiment and at 3 weeks into the 

experiment and at the end of the experiment. Feed intake was also calculated at these times. A real 

time ultrasound fat depth measurement at the P2 site (located 6 cm from the mid line of the back 

of the pig adjacent to the last rib) was taken at the start of the experiment and at 3 weeks and again 

at the end of the experimental period (6 weeks). The pigs were then given a standard finisher diet 

for the next 38 days and then slaughtered as per normal commercial practices at the Bunge Meat 

Industries abattoir. Carcass weight was recorded as head on hot standard carcass weights. Fat depth 

measurements at the P2 site and on the midline at the shoulder, midline and over the rump (back 

leg) were recorded by a Hennesy Chong probe. 

3.2.4 Statistical Analysis 

The effect of energy density on growth rate, feed conversion efficiency and feed intake for each 

experimental period was determined using the General Linear Model Univariate procedure of SPSS 

for windows version 10. 
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Table 3. Composition of the diets A to C in Experiment 2. 

RAW MATERIAL  A B C 
     
WHEAT % 7.500 61.767 59.600 
BARLEY 10.5% % 42.933   
LUPIN KERNELS % 25.000 20.000 20.000 
MILLMIX % 10.000 10.000  
CANOLA MEAL % 8.400 10.000 4.733 
MEATMEAL % 3.400 4.100 3.333 
FISHMEAL % 1.000  2.767 
BLOODMEAL %  2.467 4.000 
TALLOW %   4.000 
SALT % 0.200 0.200 0.200 
LIMESTONE % 0.433 0.333 0.333 
PALFOSS % 0.700 0.700 0.700 
LYSINE % 0.187 0.167 0.080 
METHIONINE % 0.063 0.073 0.067 
PREMIX † % 0.200 0.200 0.200 
     
CALCULATED 
ANALYSIS ‡     

        
DRY MATTER % 89.46 89.88 90.15 
DIGESTIBLE ENERGY MJ/KG 12.97 13.95 14.97 
CRUDE PROTEIN g/kg 202.8 208.5 216 
CRUDE FAT g/kg 43.8 40.2 75.6 
CRUDE FIBRE g/kg 50.0 33.8 27.3 
ASH g/kg 60.0 52.6 50.6 
CALCIUM g/kg 9.1 9.2 9 
AV.PHOSPHORUS  g/kg 4.5 4.5 4.5 
TOTAL PHOSPHORUS g/kg 7.2 6.7 6.4 
LYSINE g/kg 11.0 11.5 12.1 
AVAILABLE LYSINE g/kg 9.1 9.8 10.5 
METHIONINE g/kg 3.3 3.5 3.7 
METH+CYSTEINE g/kg 6.9 7.3 7.3 
THREONINE  g/kg 7.4 7.7 8.1 
ISOLEUCINE g/kg 8.3 7.7 7.7 
TRYPTOPHAN g/kg 2.3 2.4 2.5 
AV.LYSINE/DE g/MJ 0.7 0.70 0.7 
SALT g/kg 3.5 3.7 4.6 
†provided the following nutrients: vitamin A-7.5miu/kg, vitamin D3-1.5miu/kg, vitamin E-35 

mg/kg, Niacin-15mg/kg, Ca-D-Pantothenate-7mg/kg, Riboflavin- 2.2mg/kg, vitamin B12-
10000mg/kg, Selenium 0.25mg/kg, copper-180mg/kg, iron-110mg/kg, Manganese-25mg/kg, 
Zinc-120mg/kg, Iodine-0.2mg/kg. 

‡Diet composition calculated on the basis of chemical composition of ingredients from Bunge 
Meat Industries database. 
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3.3 RESULTS 

3.3.1 Individual housed grower pigs 

Table 4 and 5 contain the results of Experiment 1. There was a significant reduction in feed intake 

as digestible energy density increased. This was change was significant as a linear and quadratic 

function although the linear function was a better fit. Feed conversion efficiency was similarly 

linearly improved with increasing digestible energy density. There was no effect on the growth rate 

of the pigs with increasing digestible energy content of the diet. Daily digestible energy intake was 

not affected by increasing energy density of the diet. 

There was a no significant effect on dressing percentage or P2 backfat with increasing digestible 

energy density but the inherent variability of this trait would suggest a greater number is required to 

determine any effect. Males had a significantly higher rate of gain, lower feed intake and lower feed 

to gain than females. 

Table 6 indicates the economic benefit of increasing the digestible energy density of the diet. The 

subsequent Figures 5 and 6 reveal that increasing the energy density of the diet under ideal 

conditions linearly increases the cost of the gain despite the higher energy density reducing feed to 

gain. 
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Table 4.   The response of grower pigs 63-98/105 days (30-70kg) to increasing energy
                   density of the diet (Experiment 1). 
 

 Dietary   0-6 weeks  
Sex Energy Start Wt Final Wt* Daily Gain Feed:Gain Intake Daily DE 

Intake 
 MJ/Kg (kg) (kg) (Kg/d) (kg/d) (MJ/d) 

Males        
 12.5 30.0 64.1 0.975 2.17 2.11 30.5 
 13.0 30.0 64.6 1.007 2.18 2.20 28.4 
 13.5 29.9 63.6 0.973 2.27 2.20 28.7 
 14.0 30.0 65.3 1.009 2.06 2.07 29.4 
 14.5 29.9 65.3 1.011 1.90 1.92 31.2 

 15.0 30.0 65.7 1.020 1.95 1.97 31.2 
Females      

      
 12.5 30.2 68.9 0.921 2.65 2.44 26.3 
 13.0 30.2 68.3 0.908 2.40 2.18 28.6 
 13.5 30.2 65.6 0.842 2.55 2.12 29.8 
 14.0 30.1 67.6 0.893 2.36 2.09 28.9 
 14.5 30.0 68.3 0.911 2.36 2.15 27.8 
 15.0 30.2 67.7 0.893 2.33 2.08 29.5 
    

STATISTICS(P=)  
 SEM 0.202 0.430 0.010 0.028 0.023 0.297 
 Energy  0.681 0.654 0.553 0.000 0.003 0.387 
 Sex 0.999 0.001 0.000 0.000 0.014 0.014 
 Sex*Energy 0.999 0.919 0.842 0.191 0.042 0.054 
 Linear   0.675 0.653 0.000 0.000 0.040 
 Quadratic   0.618 0.697 0.001 0.000 0.117 

*Male pigs were studied for 35 days and females for 42 days 
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Table 5.      The resultant carcass measurements for grower pigs fed diets                    
                    increasing energy density from 63-98/105 days (30-70kg) (Experiment 1). 
 

Sex Dietary Energy Carcass weight Dressing Percentage P2 
 

 MJ/Kg (Kg) (%) (mm) 
Males     

 12.5 46.0 71.7 10.95 
 13.0 46.0 71.2 11.94 
 13.5 46.0 72.3 12.28 
 14.0 47.1 72.1 11.65 
 14.5 44.3 72.5 11.40 
 15.0 48.3 73.5 12.00 

Females     
     
 12.5 52.3 76.1 13.35 
 13.0 52.5 77.0 11.70 
 13.5 49.0 74.9 11.50 
 14.0 50.7 75.0 12.30 
 14.5 49.5 72.7 12.65 
 15.0 52.3 77.3 12.29 
     

STATISTICS(P=)    
 SEM 0.42 0.779 0.201 
 Energy  0.284 0.408 0.995 
 Sex 0.000 0.239 0.130 
 Sex*Energy 0.347 0.532 0.258 

 Linear  0.589 0.129 0.859 
 Quadratic  0.258 0.271 0.878 
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y=0.212+0.0159x 
R2=0.120 

Table 6.   The cost per kilogram of gain of increasing the energy  
 density of the diet (Experiment 1). 
 

Treatment Energy level 
(D.E. MJ/kg) 

Cost per kilogram of gain 
(cents/kg) 

Males              Females 
A 12.5 0.40 0.48 
B 13.0 0.42 0.46 
C 13.5 0.45 0.51 
D 14.0 0.43 0.50 
E 14.5 0.42 0.52 
F 15.0 0.46 0.55 

Statistics (P=)    
SEM  0.036  
Energy  0.000  
Sex  0.000  
Energy*Sex  0.120  
Linear (Energy)  0.009 0.000 
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Figure 5.  Cost per kg of gain – Males (Experiment 1). 
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Figure 6.  Cost per kg of gain – Females (Experiment 1). 

 

 

3.3.2 Group housed grower pigs 

Tables 7 to 11 contain the results of experiment 2. The overall result is presented in Table 7 and 

shows that increasing the digestible energy density of the diet significantly increased the rate of gain 

(p<0.04) and P2 (p<0.03) of pigs 63-105 days of age. Feed to gain (p<0.04) and feed intake 

(P<0.016) are significantly reduced with increasing digestible energy density of the diet. The 

increase in grower performance was not significantly reflected in eventual carcass weight 

differences, as can be seen in Table 8. 

COST PER KG OF GAIN 
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R2=0.255 

- FEED:GAIN 



 

33 

 

Tables 9 to 11 display the results at two week periods during the grower phase and indicate that the 

differences in performance were magnified the longer the pigs were exposed to the treatments. 

Figure 7 shows that under commercial conditions increasing the energy density of the diet increases 

the cost of the gain despite the higher dietary energy reducing feed to gain. 

 

Table 7.  The growth response of male grower pigs 63-105 days of age (25-65kg) to  
increasing energy density of the diet and housed under commercial 
conditions. 

Treatment Energy level 
(D.E.MJ/kg) 

Average 
start weight 

(Kg) 

Average 
final weight 

(Kg) 

Rate of 
Gain 

(g/day)

Feed:
gain 

Feed 
Intake 
(Kg/d) 

P2 
(mm) 

DE 
Intake 
(MJ/d) 

A 13 25.44 60.70 0.735 2.28 1.67 7.3 21.7 
B 14 25.84 62.16 0.757 2.18 1.65 8.4 23.1 
C 15 25.35 63.78 0.800 1.99 1.59 8.7 23.8 
         
SEM  0.339 0.681 0.011 0.039 0.016 0.233 0.317 

Significance P=   0.191 0.016 0.001 0.030 0.024 0.004 
 

Table 8.  The subsequent finisher performance and carcass response of male pigs fed 
diet of increasing energy density of the diet during the grower phase and 
housed under commercial conditions. 

Treatment Energy level 

(D.E.MJ/kg) 

Rate of Gain 
finisher 

(g/day) 

Carcass weight 

(Kg) 

Dressing 
Percentage 

(%) 

P2 

(mm) 

A 13 0.969 70.2 71.7 14.4 
B 14 0.939 71.9 73.3 13.8 
C 15 0.914 72.4 73.1 14.0 
      

SEM  0.014 0.653 0.437 0.253 
Significance P=  0.272 0.367 0.273 0.290 
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Table 9. The growth response of male grower pigs 63-77 days of age (25-35kg) to 
increasing energy density of the diet and housed under commercial 
conditions. 

Treatment Energy level 
(D.E. MJ/kg)

Rate of Gain 
(g/day) 

Feed:gain Feed Intake 
(Kg/d) 

DE Intake 
(MJ/d) 

A 13 0.659 1.90 1.253 16.3 
B 14 0.660 1.88 1.242 17.4 
C 15 0.692 1.75 1.210 18.2 
      

SEM 0.009 0.024 0.013 0.286 
Significance P= 0.220 0.001 0.409 0.012 

      
 

Table 10.  The growth response of male grower pigs 77-91 days of age (35-46kg) to 
increasing energy density of the diet and housed under commercial 
conditions. 

Treatment Energy level 
(D.E. MJ/kg)

Rate of Gain 
(g/day) 

Feed:gain Feed Intake 
(Kg/d) 

DE Intake 
(MJ/d) 

A 13 0.774 2.12 1.640 21.3 
B 14 0.804 1.96 1.572 22.0 
C 15 0.844 1.85 1.562 23.4 
      

SEM  0.017 0.038 0.024 0.398 
Significance P= 0.264 0.001 0.363 0.073 

      
 

Table 11. The response of Male grower pigs 91-105 days of age (46-65kg) to increasing 
energy density of the diet housed under commercial conditions. 

Treatment Energy level
(D.E. MJ/kg)

Rate of Gain 
(g/day) 

Feed:gain Feed Intake 
(Kg/d) 

DE Intake 
(MJ/d) 

A 13 0.760 2.60 1.970 25.6 
B 14 0.792 2.52 1.992 27.9 
C 15 0.846 2.24 1.885 28.3 
      

SEM  0.019 0.060 0.021 0.413 
Significance P= 0.171 0.013 0.063 0.002 
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Graph 3. Cost per kg of gain - commercial 
conditions
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Figure 7.  Cost per kg of gain under commercial conditions. 

 

 

 
3.4 DISCUSSION 
 
The results of Experiment 1 show that regardless of the digestible energy density of the diet, pigs 

grown under ideal conditions did not show any significant increase in daily liveweight gain or 

carcass weight. Since this effect was totally related to feed intake it is obvious that the pig will adjust 

its feed intake to meet a total energy demand under ideal growing conditions. This energy demand 

for the pigs under ideal conditions was approximately 29 MJ/day and supported expected maximal 

growth rate regardless of energy density. 

There was a trend towards increasing dressing percentage of the pigs as energy density of the diet 

increased. This is likely a result of a decrease in the volume of the gastrointestinal tract due to the 

lower volumes of feed passing through the tract. 
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The cost effectiveness of increasing the energy density of the diet and reducing the feed to gain was 

explored in the graphical representation of the cost per kilogram of gain. The results show that the 

increase in the cost of the diets is greater than the savings made from the decrease in feed to gain as 

the energy density of the diet increases. 

The results of experiment two show that under commercial conditions increasing the digestible 

energy density of the diet will increase the growth rate of male pigs over the growing period from 

25-65kg. The increase in growth rate during the growing period was not significantly carried 

through to final carcass weight although there was a trend towards a heavier carcass weight. Thus 

the pig may compensate in the finisher period for the difference in growth rate during the grower 

period. 

Feed to gain and feed intake reduced significantly with increasing energy density of the diet. Carcass 

fat was increased with increasing energy density. This result indicates that as the energy intake of 

the male pigs tended to increases from 21 MJ/day to 23 MJ/day with increasing energy density a 

proportion of the energy is diverted to fat reserves. Thus not all energy is invested in muscle 

synthesis. This is due to the pigs increasing fat deposition as they move towards maximum energy 

intake. 

There was a significant decrease in feed to gain in the three phases of the grower period. Rate of 

gain, while not significant in any phase of the grower period, showed a trend of increasing with 

increasing energy density and also showed a trend of an increasing difference between each 

treatment at each phase.  

On a feed to gain basis there would be no economical advantage of increasing energy density but if 

the increase in growth rate was maintained with possibly a higher energy finisher ration then on a 

carcase basis there maybe an economical advantage of increasing energy density. 
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Conclusion 

The conclusion from these two experiments is that pigs under ideal conditions do not show a 

response to increasing the energy density of the diet and will adjust their feed intake to meet their 

energy demands to achieve maximal protein and fat deposition. Pigs under commercial conditions, 

however, had levels of performance 75-80% below that of pigs under ideal conditions. This was 

directly attributed to their reduction of feed intake as feed efficiency in both experiments were 

similar. On the lowest energy density feed intake was restricted to 75% of that of pigs in ideal 

conditions on the same energy density and was greater than that experienced on the other two 

treatments of 80% of maximal intake. This can be seen graphically in figure 8. A pig under 

commercial conditions is reduced in its capacity to respond to reductions in energy density of the 

diet below 14 MJ/kg due to social or environmental constraints that affect feed intake.  
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Figure 8: The effect of housing type (group or individual) on pigs’ growth rate over the grower 

phase of production (30-70kg liveweight). 
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C h a p t e r  4  

EFFECT OF ENERGY DENSITY ON THE PERFORMANCE 

CHARACTERISTICS OF FINISHER PIGS. 

4.1 Introduction 

Optimal nutritional management of the "finisher" pig is constrained by lack of quantitative 

information on the response of animals between 65 and 110 kg live weight to dietary energy 

content. Under "ideal" conditions modern genotypes appear to adjust feed intake to maintain a 

constant DE intake over a much wider range of dietary energy concentrations than previously 

thought (Mullan et al, 1998). However, under commercial pen conditions, voluntary feed intake is 

lower, pigs respond in terms of both growth rate and feed conversion to dietary DE density 

considerably above the levels currently thought to maximise biological and economic responses. 

Chapter three of this thesis highlighted that in grower pigs (30-70kg) individually housed pigs 

maintained a constant daily digestible energy intake whereas in group housed pigs increasing 

digestible energy density increased daily digestible energy intake and thus growth rate. The present 

study was designed to provide information on the response of finisher pigs to dietary energy 

content under ideal and commercial housing conditions. 

4.2 METHODS 

4.2.1  Experiment 3 – Individual finisher pigs 

The experiment was designed as a two by five factorial with the factors being sex (male and female) 

and energy density (12, 12.8, 13.6, 14.4, 15.2 MJ DE/kg). Eight male and eight female pigs, 16 

weeks of age, were randomly assigned to each dietary energy treatment. Pigs were a commercial 

crossbred genotype. The pigs were housed in individual pens measuring 1.5m by 1 m. Two basal 
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diets were formulated to contain the high and low energy density diets. The composition of the 

basal diets is shown in Table 12. The low energy density basal diet contained 12.0 MJ DE/kg 

whereas the high energy density basal diet contained 15.2MJ DE/kg. The two basal diets were then 

combined in the ratio of 3:1, 1:1 and 1:3 to obtain the dietary treatments of 12.8, 13.6 and 14.4 MJ 

DE/kg respectively. The experiment was conducted over a six-week period during the spring 

months. Pigs were individually weighed at the beginning of the experiment, 3 weeks into the 

experiment and at the end of the experiment. Feed intake was recorded daily although only 

reported at 3 and 6 weeks of the experiment. A real time ultrasound fat depth measurement at the 

P2 site (located 6 cm from the back line of the pig adjacent to the last rib) was taken at the start of 

the experiment, at 3 weeks and again at the end of the experiment (6 weeks). The pigs were then 

slaughtered as per normal commercial practices at the Bunge Meat Industries abattoir. Carcass 

weight was recorded as head on hot standard carcass weights. Fat depth measurements at the P2 

site and on the midline at the shoulder, midline and over the rump (back leg) were recorded by a 

Hennesy Chong probe.  
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Table 12.  Composition of the basal diets A and B (Experiment 3).  

 
RAW MATERIAL  Base A   Base B 
  % Inclusion   % Inclusion 
      
BARLEY % 72.366 WHEAT  66.210
MILLMIX % 10.000 GROATS  15.000
CANOLA MEAL % 14.133 MEATMEAL  8.733
WATER % 1.000 FISHMEAL  1.567
SALT % 0.200 BLOODMEAL 3.000
LIMESTONE % 1.167 WATER 1.000
PALFOSS % 0.700 TALLOW-MIXER 4.000
DICALCIUM PHOSPHATE % 0.100 SALT 0.200
LYSINE % 0.134 LYSINE-HCL 0.063
PREMIX† % 0.200 THREONINE 0.027
 %   PREMIX† 0.200
      
CALCULATED ANALYSIS 
‡   

 
  

         
DRY MATTER % 89.48  89.65
DIGESTIBLE ENERGY MJ/KG 12.01  15.20
CRUDE PROTEIN g/kg 139.10    174.30
CRUDE FAT g/kg 22.00    76.60
CRUDE FIBRE g/kg 65.00    21.30
ASH g/kg 56.20    40.20
CALCIUM g/kg 8.18    8.02
AV.PHOSPHOROUS  g/kg 3.01    4.76
TOTAL PHOS. g/kg 5.73    6.40
LYSINE g/kg 7.42    9.14
AVAILABLE LYSINE g/kg 6.25    7.92
METHIONINE g/kg 2.41    2.80
METH+CYSTEINE g/kg 5.63    6.12
THREONINE  g/kg 5.19    6.40
ISOLEUCINE g/kg 5.20    5.21
TRYPTOPHAN g/kg 1.79    1.82
AV.LYSINE/DE g/MJ 0.52    0.52
SALT g/kg 2.86    4.72
†provided the following nutrients: vitamin A-5miu/kg, vitamin D3-1miu/kg, vitamin E-25 mg/kg, 

Niacin-10mg/kg, Ca-D-Pantothenate-5mg/kg, Riboflavin- 1mg/kg, Selenium-0.15mg/kg, 
copper-180mg/kg, iron-80mg/kg, Manganese-10mg/kg, Zinc-100mg/kg, Iodine-0.2mg/kg. 

‡Diet composition calculated on the basis of chemical composition of ingredients from Bunge 
Meat Industries database. 
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4.2.2  Experiment 4 – Group housed finisher pigs 

 

The experiment was designed as a two by five factorial with the factors being sex (male and female) 

and energy density (12, 12.8, 13.6, 14.4, 15.2 MJ DE/kg). Two hundred and fifty male and two 

hundred and fifty female pigs of 16 weeks of age were randomly assigned to each dietary energy 

treatment. Pigs were a commercial crossbred genotype. The pigs were housed in group pens of ten 

animals per pen each pen measuring 2.5m by 3 m. There were five pens allocated to each of the ten 

treatments. Two basal diets were formulated to contain the high and low energy density diets. The 

composition of the basal diets is shown in Table 12. The low energy density basal diet contained 

12.0 MJ DE/kg whereas the high energy density basal diet contained 15.2MJ DE/kg. The two 

basal diets were then combined in the ratio of 3:1, 1:1 and 1:3 to obtain the dietary treatments of 

12.8, 13.6 and 14.4 MJ DE/kg respectively. The experiment was carried out over a six-week period 

during the spring months. Five pigs per pen were randomly selected and individually weighed at the 

beginning of the experiment, at 3 weeks into the experiment and at the end of the experiment. A 

real time ultrasound fat depth measurement at the P2 site (located 6 cm from the back line of the 

pig adjacent to the last rib) was taken on the selected pigs at the start of the experiment, 3 weeks 

and again at the end of the experiment (6 weeks). All pigs were then slaughtered as per normal 

commercial practices at the Bunge Meat Industries abattoir. Carcass weight was recorded as head 

on hot standard carcass weights. Fat depth measurements at the P2 site and on the midline at the 

shoulder, midline and over the rump (back leg) were recorded by a Hennesy Chong probe.  
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4.3 RESULTS 

4.3.1 Experiment 3 

The results in Table 13 show the effect of the energy density on the growth performance of pigs 

from 65 kilograms for the next 3 and 6 weeks housed in individual accommodation. There was a 

significant linear decrease in feed:gain in the 0-3 week period and also over the entire 6 week period 

with increasing energy density of the diet. There was a non-significant trend towards increasing 

growth rate with increasing energy density of the diet. There was also a non-significant trend 

towards decreased feed intake with increasing energy density of the diet. Liveweight at 3 weeks and 

at 6 weeks increased with increasing energy density but was not significant. Female pigs ate 

significantly less than males in the 3-6 week period. 

The increase in feed:gain in males on the 15.2 MJ diet as compared to the 14.4 MJ diet is probably 

an artifact of the experiment due to high wastage factor associated with this diet which may also 

have limited actual intake of feed and thus growth rate. 

Figures 9 and 10 show graphically the effect of energy density on growth rate and feed conversion 

for each time period for each sex respectively. 

The ultrasound measurements of P2 on the live animal (Table 14) showed a significant linear 

increase in P2 in females with increasing dietary energy density with no effect in the males for the 

first 21 days. The 42 day results indicated that while not significant there was a non-significant trend 

to increasing P2 with increasing dietary energy density in both sexes. The change in P2 was greatest 

in the higher dietary energy diets (14.4 and 15.2 MJ DE/kg ). 

The slaughter results shown in Table 15 indicate there was a significant increase in carcass weight 

with increasing energy density of the diet to 13.6 MJ/kg for male pigs. There was trend to 

increasing carcass weight in the female pigs but was not significant. Female pigs had a significantly 
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higher dressing percentage than male pigs. Dietary energy density had no significant effect on 

dressing percentage although there was a trend towards increasing dressing percentage as dietary 

energy density increased. 

The measurements of fat depth at several sites on the carcass indicate that there was no significant 

effect of energy density on fat deposition. There was some significant interactions in the shoulder 

and leg fat depth measurements between sex and energy density of the with the females but not 

males showing increased fat deposition with increased energy density of the diet.  

The significant increases in P2 (P<0.05) change over the 6 week period of the experiment indicate 

that while feed efficiency in gross terms of feed to gain of the animals is improving the efficiency in 

terms of energy utilisation for lean deposition it is diminishing (Table 16). 

In general the lowest cost per unit of gain is seen when the cost of the feed is lowest (dietary energy 

density is lowest) and feed:gain is the highest. The cost of feed for the purposes of this experiment 

is considered a linear relationship between the lowest and highest dietary energy densities and only 

raw material cost is used as a cost of feed as all other costs are considered fixed.  

Figure 11 indicates the relationship between digestible energy intake and growth rate, which is 

linear over the entire range of digestible energy intakes for both male and females. The difference 

between males and females indicates that males tend to grow about 35 grams per day faster than 

females but respond in exactly the same manner in terms of increasing digestible energy intake. 
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Table 13.   Effects of energy density and sex on the growth performance of pigs offered feed ad libitum for 21 and 42 days     

 from 65 kg liveweight (Experiment 3) 

 

 Dietary    0-6 weeks 0-3 weeks 3-6 weeks 
Sex Energy Start Wt 21 day Wt 42 day Wt Daily Gain Feed:Gain Intake Daily Gain  Feed:Gain Intake Daily Gain  Feed:Gain Intake 

 MJ/Kg (kg) (kg) (kg) (Kg/d) (kg/d) (Kg/d) (kg/d) (Kg/d)  (kg/d) 
Males              

 12.0 65.10 79.5 97.8 0.780 3.034 2.357 0.687 3.171 2.045 0.873 3.154 2.668 
 12.8 65.65 82.0 100.3 0.825 2.925 2.384 0.780 2.781 2.123 0.870 3.112 2.645 
 13.6 65.13 82.7 103.1 0.905 2.644 2.350 0.839 2.602 1.988 0.971 2.831 2.711 
 14.4 65.08 83.2 103.4 0.914 2.597 2.352 0.864 2.414 2.066 0.963 2.763 2.638 
 15.2 65.25 81.3 99.9 0.825 2.674 2.176 0.763 2.503 1.883 0.887 2.920 2.468 

Females      
       
 12.0 66.09 80.7 96.7 0.729 3.112 2.266 0.698 3.017 2.093 0.759 3.238 2.440 
 12.8 65.38 81.4 98.6 0.790 2.747 2.147 0.765 2.620 1.959 0.815 2.966 2.335 
 13.6 65.45 80.6 96.9 0.748 2.979 2.223 0.724 2.903 2.052 0.773 3.102 2.393 
 14.4 65.38 80.5 99.2 0.806 2.771 2.166 0.723 2.758 1.958 0.889 2.817 2.374 
 15.2 65.38 81.9 100.7 0.842 2.526 2.112 0.788 2.459 1.925 0.895 2.600 2.298 
      

STATISTICS(P=)      
 SEM 0.316 0.578 0.797 0.016 0.378 0.032 0.021 0.055 0.034 0.020 0.059 0.038 
 Energy  0.996 0.561 0.606 0.285 0.000 0.529 0.561 0.001 0.659 0.414 0.135 0.562 
 Sex 0.664 0.239 0.123 0.032 0.417 0.232 0.239 0.548 0.660 0.026 0.928 0.000 
 sex*energy 0.985 0.624 0.666 0.448 0.080 0.929 0.624 0.337 0.807 0.518 0.566 0.967 
 Linear (E)  0.025 0.000 0.026 0.252 0.002 0.329 0.023 0.029 0.024 
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Table 14.  Effects of energy density of the diet and sex on ultrasound P2 of pigs     
 offered feed ad libitum for 21 and 42 days from 65 kg liveweight 
 (Experiment 3). 

 
 Energy Density P2 - Start 21 day P2 42 day P2 P2 change 0-42 days

 (MJ/kg) (mm) (mm) (mm) (mm) 
Males      

 12.0 8.88 10.25 12.00 3.13 
 12.8 9.25 9.88 13.00 3.75 
 13.6 8.13 10.38 11.75 3.63 
 14.4 8.75 10.13 14.50 5.75 
 15.2 8.25 11.25 13.25 5.00 

Females      
      

 12.0 10.00 10.00 12.00 2.00 
 12.8 8.38 9.25 10.38 2.00 
 13.6 10.88 14.13 14.38 3.50 
 14.4 9.63 12.00 13.75 4.13 
 15.2 9.38 11.88 14.38 5.00 
  

STATISTICS (P=) 
 SEM 0.231 0.282 0.361 0.330 
 Energy 0.790 0.009 0.117 0.045 
 Sex 0.031 0.036 0.947 0.149 
 Energy*Sex 0.177 0.051 0.192 0.852 
 Linear 0.060 0.015 0.057 0.003 
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Table 15.  Effects of energy density of the diet and sex on slaughter characteristics 
 of pigs offered feed ad libitum for 42 days from 65 kg liveweight 
 (Experiment 3). 

 
 Energy Density HSCW    DRS%      HC_P2  SHLDR     MID      LEG  

 (MJ/kg) (kg) % (mm) (mm) (mm) (mm) 
Males       

 12.0 75.05 76.68 12.35 30.4 15.3 16.9
 12.8 77.58 77.33 12.50 31.8 17.0 19.9
 13.6 85.35 83.24 11.65 31.0 16.5 18.3
 14.4 81.29 78.17 13.11 35.0 17.7 23.4
 15.2 77.40 76.45 12.29 30.0 15.3 18.0

Females   
   
 12.0 77.54 80.21 12.23 32.1 17.6 21.0
 12.8 80.08 81.13 13.20 29.8 16.6 18.4
 13.6 78.23 80.77 14.40 35.3 19.4 24.9
 14.4 80.85 81.61 12.85 29.3 19.0 22.3
 15.2 82.00 81.42 10.65 34.0 18.0 22.6
   

STATISTICS(P=)  * *  
 SEM 0.730 0.005 0.315 0.520 2.236 0.550
 Energy 0.035 0.142 0.475 0.456 0.347 0.058
 Sex 0.797 0.006 0.663 0.660 0.186 0.012
 Energy*Sex 0.019 0.104 0.282 0.004 0.384 0.034
 Linear (E) 0.187 0.588 0.670 0.646 0.396 0.012

 HSCW- Hot standard carcass weight, DRS% - Dressing Percentage, HC P2 - 
Hennessy Chong P2, SHLDR - Shoulder Fat Depth, MID - Midline Fat Depth , 
LEG - Fat Depth on The Hind Leg 

 * HSCW was used as a covariant for dressing percentage and HC P2 statistics 
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Table 16. Effects of dietary energy density and sex on daily digestible energy 
intake, energy utilisation (digestible energy per kilogram of liveweight 
gain MJ/KG) and cost per unit of gain ($/Kg) 

 Dietary  Daily Digestible 
Energy Intake 
(MJ/day) 

  Energy 
Utilisation 
(MJ/kg gain)

  Cost per Kg gain 
($/kg gain) 

 

Sex Energy 0-6 
weeks 

0-3 
weeks 

3-6 
weeks

0-6 
weeks

0-3 
weeks

3-6 
weeks

0-6 
weeks

0-3 
weeks 

3-6 
weeks 

Males           
 12 28.28 24.54 32.02 36.37 35.73 36.70 0.543 0.535 0.549 
 12.8 30.52 27.18 33.85 36.99 34.86 38.90 0.590 0.556 0.621 
 13.6 31.96 27.04 36.88 35.30 32.22 37.96 0.595 0.542 0.639 
 14.4 33.87 29.75 37.99 37.07 34.42 39.44 0.653 0.606 0.695 
 15.2 33.07 28.63 37.51 40.08 37.51 42.30 0.734 0.687 0.774 
Females           
 12 27.20 25.11 29.28 37.33 35.98 38.57 0.558 0.539 0.577 
 12.8 27.48 25.08 29.88 34.76 32.76 36.65 0.555 0.523 0.585 
 13.6 30.23 27.91 32.55 40.40 38.56 42.13 0.680 0.649 0.709 
 14.4 31.19 28.20 34.18 38.70 39.02 38.44 0.682 0.687 0.677 
 15.2 32.10 29.27 34.93 38.14 37.13 39.02 0.698 0.680 0.715 
STATISTICS(P=)           

 SEM 0.485 0.504 0.504 0.423 0.430 0.754 0.011 0.011 0.014 
 Energy 0.002 0.035 0.001 0.177 0.567 0.653 0.000 0.000 0.000 
 Sex 0.034 0.748 0.001 0.454 0.504 0.874 0.518 0.538 0.815 
 Energy*Sex 0.924 0.799 0.971 0.088 0.284 0.519 0.075 0.329 0.454 
 Linear (E) 0.000 0.002 0.000 0.024 0.421 0.131 0.000 0.005 0.002 
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Figure 9:   Effect of dietary energy density of the feed on growth performance 
of male pigs housed individually (Experiment 3)
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Figure 10:   Effect of dietary energy density of the feed on growth performance of 
female pigs housed individually (Experiment 3)
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Figure 11: Effect of digestible energy intake per day on growth rate in 
individually housed pigs from 65-100kg (Experiment 3)
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4.3.2   Experiment 4 

The results for pigs housed commercially in group pens are given in Tables 17-19. There was a 

significant (p<0.001) linear increase in growth rate with increasing energy density of the diet in all 

growth periods resulting in a linear increase in 42 day weight with increasing energy density of the 

diet. There was a significant (p<0.001) linear reduction in feed conversion ratio with increasing 

energy density for the 3-6 week period and over the total finisher period. This is represented 

graphically for males in Figure 12 and for females in Figure 13. Male pigs had a significantly lower 

feed to gain than females. Feed intake was unaffected by energy density of the diet or by sex of the 

animal.   

The carcass results are shown in Table 20 and graphically in Figure 14. The energy density of the 

diet significantly (p<0.001) increased the final carcass weight. The fat thickness measurements and 

dressing percentage results show a significant linear increase with increasing energy density, 

however when carcass weight is taken as a covariate there is no significant effect of dietary energy 

density on these measurements with the exception of shoulder fat depth (p<0.05). Male pigs had a 

significantly lower dressing percentage and fat depth at all sites. 

Table 21 shows the growth performance, ultrasound fat measurements and carcass results 

measured on 25 individuals per treatment group. There was a significant linear increase in final 

weight and carcass weight with increasing dietary energy density. There was a significant linear 

increase in ultrasound P2 with increasing energy density although this effect was dependant on the 

method of measurement of carcass P2, use of the Hennessy Chong method produced higher 

carcass fat thicknesses resulting in the conclusion that the carcass fat in females was higher than in 

males. Similar effects were also observed when measurements were made in other fat depots. 

Dressing percentage showed a highly significant linear increase with increasing energy density; 

males having a significantly lower dressing percentage than females. 
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Table 22 shows the effect of increasing dietary energy density on the utilisation of dietary energy. 

Males had a better efficiency of energy utilisation than females and the trend seen in individual pigs 

of increasing inefficiency was not as evident for group housed pigs. Similarly to pigs in the 

individual housed study the lowest cost per unit of gain is seen when the cost of the feed is lowest 

(dietary energy density is lowest) and efficiency of energy utilisation is the highest. 

Figure 15 indicates the relationship between digestible energy intake and growth rate for group-

housed pigs that is linear over the entire range of digestible energy intakes for both male and 

females. The difference between males and females indicates that males tend to grow faster than 

females and increases with increasing digestible energy intake. This indicates that the male has a 

greater capacity for increased growth rate at weights between 60 and 100 kgs.  
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Table 17. Effects of dietary energy density and sex on growth performance of 

pigs offered feed ad libitum for 42 days from 65 kg liveweight 
housed in group pens (Experiment 4). 

 

 

 Dietary    0-6 weeks  
Sex Energy Start 

Wt 
21 day 

Wt 
42 day 

Wt 
Daily 
Gain   

Feed:Gain Intake DE 
Intake 

 MJ/Kg (kg) (kg) (kg) (Kg/d)  (kg/d) (MJ/d) 
Males         

 12.0 62.1 80.2 95.3 0.824 2.989 2.456 29.5 
 12.8 62.2 82.8 99.4 0.926 2.767 2.564 32.8 
 13.6 62.0 82.3 101.3 0.982 2.634 2.581 35.1 
 14.4 62.4 85.7 102.7 1.002 2.481 2.484 35.8 
 15.2 62.0 83.8 102.0 0.995 2.456 2.436 37.0 

Females      
      
 12.0 64.1 83.6 96.9 0.806 3.161 2.535 30.4 
 12.8 64.2 83.0 97.7 0.826 3.068 2.525 32.3 
 13.6 64.0 84.6 100.3 0.889 2.921 2.601 35.4 
 14.4 64.1 85.3 101.0 0.902 2.826 2.537 36.5 
 15.2 64.2 86.0 101.3 0.909 2.725 2.471 37.6 
      

STATISTICS (P=)     
 SEM 0.325 0.770 0.588 0.014 0.039 0.026 0.506 

 Energy 0.999 0.628 0.002 0.001 0.000 0.597 0.000 
 Sex 0.004 0.645 0.051 0.013 0.000 0.511 0.587 
 Energy*Sex 0.999 0.938 0.821 0.740 0.838 0.971 0.974 
 Linear (E)  0.117 0.000 0.000 0.000 0.524 0.000 
 Quadratic (E)  0.285 0.000 0.000 0.000 0.241 0.000 
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Table 18. Effects of dietary energy density and sex on growth performance 
of pigs offered feed ad libitum for 21 days from 65 kg liveweight 
housed in group pens (Experiment 4) 

 

 

 Dietary   0-3 weeks 
Sex Energy Start 

Wt 
21 day 

Wt 
Daily 
Gain   

Feed:Gain Intake DE 
Intake 

 MJ/Kg (kg) (kg) (Kg/d)  (kg/d) (MJ/d) 
Males        

 12.0 62.1 80.2 0.790 2.925 2.311 27.7 
 12.8 62.2 82.8 0.895 2.703 2.421 31.0 
 13.6 62.0 82.3 0.951 2.547 2.423 32.9 
 14.4 62.4 85.7 1.006 2.369 2.375 34.2 
 15.2 62.0 83.8 0.953 2.449 2.324 35.3 

Females     
     
 12.0 64.1 83.6 0.785 2.955 2.298 27.6 
 12.8 64.2 83.0 0.819 2.902 2.371 30.3 
 13.6 64.0 84.6 0.901 2.642 2.380 32.4 
 14.4 64.1 85.3 0.928 2.625 2.408 34.7 
 15.2 64.2 86.0 0.888 2.610 2.310 35.1 
     

STATISTICS(P=)    
 SEM 0.325 0.770 0.016 0.038 0.031 0.564 
 Energy 0.999 0.628 0.002 0.111 0.808 0.000 
 Sex 0.004 0.645 0.099 0.012 0.895 0.805 
 Energy*Sex 0.999 0.938 0.917 0.777 0.996 0.995 
 Linear (E)  0.117 0.000 0.000 0.931 0.000 
 Quadratic (E)  0.285 0.000 0.000 0.413 0.000 
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Table 19. Effects of dietary energy density and sex on growth 

performance of pigs offered feed ad libitum for 21 days from 
80 kg liveweight housed in group pens (Experiment 4) 

 

 

 Dietary   3-6 weeks 
Sex Energy 21 day 

Wt 
42 day 

Wt 
Daily 
Gain   

Feed:Gain Intake DE 
Intake 

 MJ/Kg (kg) (kg) (Kg/d)  (kg/d) (MJ/d) 
Males        

 12 80.2 95.3 0.861 3.045 2.601 31.2 
 12.8 82.8 99.4 0.956 2.889 2.756 35.3 
 13.6 82.3 101.3 1.017 2.680 2.707 36.8 
 14.4 85.7 102.7 0.983 2.680 2.632 37.9 
 15.2 83.8 102.0 1.050 2.472 2.590 39.4 

Females    
    
 12.0 83.6 96.9 0.832 3.394 2.804 33.7 
 12.8 83.0 97.7 0.818 3.331 2.687 34.4 
 13.6 84.6 100.3 0.869 3.321 2.890 39.3 
 14.4 85.3 101.0 0.850 3.197 2.670 38.4 
 15.2 86.0 101.3 0.921 2.828 2.596 39.5 
    

STATISTICS(P=)   
 SEM 0.770 0.588 0.016 0.061 0.034 0.572 
 Energy 0.628 0.002 0.010 0.000 0.227 0.000 
 Sex 0.645 0.051 0.000 0.000 0.465 0.323 
 Energy*Sex 0.938 0.821 0.517 0.620 0.753 0.728 
 Linear (E) 0.117 0.000 0.006 0.002 0.234 0.000 
 Quadratic (E) 0.285 0.000 0.025 0.007 0.206 0.000 
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Table 20. Effects of energy density of the diet and sex on slaughter 
characteristics of pigs offered feed ad libitum for 42 days from 63 kg 
liveweight housed in group pens (Experiment 4). 
 

 Dietary Carcass  Dressing Fat Thickness 
Sex Energy Weight     P2    Percentage Leg  Midline Shoulder

 MJ/Kg (kg) (mm) (%) (mm) (mm) (mm) 
Males       

 12.0 72.94 10.59 76.59 16.88 15.02 25.66
 12.8 76.20 10.68 76.61 18.30 16.06 27.92
 13.6 77.91 11.98 76.93 19.10 16.36 28.18
 14.4 80.15 12.30 78.04 20.16 16.78 30.40
 15.2 79.05 12.32 77.46 19.90 17.30 30.28

Females   
   
 12.0 75.60 12.22 78.08 20.38 17.68 30.26
 12.8 76.43 12.64 78.19 22.46 18.48 31.72
 13.6 79.48 13.12 79.25 22.76 19.90 31.42
 14.4 80.84 14.48 80.10 24.28 20.76 33.06
 15.2 82.01 14.71 80.98 24.60 21.32 34.68
   

STATISTICS(P=)  * * * * *
 SEM 0.538 0.249 0.246 0.468 0.356 0.444
 Energy 0.000 0.683 0.214 0.744 0.874 0.036
 Sex 0.695 0.000 0.000 0.000 0.000 0.000
 Energy*Sex 0.767 0.605 0.134 0.654 0.623 0.722
 Linear (E) 0.000 0.000 0.001 0.005 0.002 0.000
 Quadratic (E) 0.000 0.002 0.005 0.015 0.009 0.001

* Carcass weight was used as co-variate. 
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Table 21.  Effects of dietary energy density and sex on growth performance and slaughter characteristics of finisher pigs  
  (25 selected Individuals within each treatment)  (Experiment 4)    
 Dietary  Carcass Carcass Dressing  Fat Thickness  

Sex Energy Start Wt P2 Start 42 day Wt P2 end Weight  P2     Percentage Leg Midline Shoulder
 MJ/Kg (kg) (mm) (kg) (mm) (kg) (mm) (%) (mm) (mm) (mm) 
Males           

 12 61.73 7.68 93.28 11.04 71.42 11.05 76.54 16.83 15.08 25.63
 12.8 62.90 7.04 99.75 12.00 76.55 10.85 76.75 18.72 16.44 27.48
 13.6 62.92 7.40 101.62 13.00 78.94 12.02 77.64 19.54 16.38 28.88
 14.4 62.35 7.36 100.98 13.42 79.41 12.33 74.68 20.23 17.14 30.41
 15.2 62.98 7.44 101.32 12.76 79.54 12.30 78.47 20.00 17.75 29.71

Females   
   
 12 63.56 8.48 96.37 11.48 75.48 12.82 78.29 21.17 18.42 30.75
 12.8 64.03 8.72 98.77 12.17 77.73 13.10 79.05 23.33 19.14 32.14
 13.6 63.60 8.28 99.13 12.08 78.94 13.32 80.26 23.05 19.68 33.05
 14.4 65.01 8.44 100.28 12.56 81.46 13.37 80.38 23.23 19.59 32.77
 15.2 62.12 7.92 98.12 13.40 79.83 13.38 81.32 23.96 21.13 34.48
   

STATISTICS(P=)  
 SEM 0.468 0.117 0.669 0.190 0.565 0.210 0.154 0.367 0.266 0.338
 Energy 0.925 0.866 0.000 0.014 0.000 0.927 0.000 0.830 0.788 0.129
 Sex 0.252 0.000 0.006 0.778 0.357 0.001 0.000 0.000 0.000 0.000
 Energy*Sex 0.815 0.546 0.305 0.547 0.580 0.874 0.345 0.951 0.972 0.566
 Linear (E)  0.011 0.001 0.000 0.038 0.000 0.012 0.268 0.000
 Quadratic (E)  0.010 0.001 0.000 0.108 0.000 0.029 0.008 0.000

Carcass weight was used as co-variant for carcass P2 and dressing percentage analysis. Fat thickness measurements were analysised as a group
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Table 22. Effect of dietary energy density and sex on energy utilisation (digestible 
energy per kilogram of liveweight gain MJ/KG) and cost per unit of 
gain ($/Kg) group housing  (Experiment 4) 
 

 Dietary  Energy Utilisation (MJ/kg 
gain) 

 Cost per Kg gain       
($/kg gain) 

 

Sex Energy 0-6 weeks 0-3 weeks 3-6 weeks 0-6 weeks 0-3 weeks 3-6 weeks
Males    

 12.0 35.1 36.2 35.8 0.535 0.525 0.543
 12.8 34.6 36.9 35.4 0.566 0.553 0.589
 13.6 34.6 36.2 35.8 0.602 0.583 0.609
 14.4 34.0 38.6 35.7 0.629 0.599 0.679
 15.2 37.1 37.5 37.2 0.681 0.679 0.686

Females    
    
 12.0 35.1 40.5 37.7 0.565 0.526 0.605
 12.8 37.1 42.1 39.1 0.624 0.591 0.671
 13.6 35.9 45.2 39.8 0.670 0.605 0.761
 14.4 37.4 45.2 40.5 0.713 0.658 0.797
 15.2 39.5 42.8 41.3 0.757 0.724 0.784

STATISTICS(P=)        
 SEM 0.423 0.430 0.754 0.011 0.011 0.014
 Energy 0.130 0.046 0.380 0.000 0.000 0.001
 Sex 0.004 0.036 0.000 0.006 0.044 0.000
 Energy*Sex 0.397 0.358 0.579 0.329 0.307 0.433
 Linear (E) 0.052 0.033 0.281 0.000 0.000 0.004
 Quadratic (E) 0.141 0.037 0.365 0.000 0.000 0.016
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Figure 12: Effect of dietary energy density and sex on growth performance of 
males housed in group pens from 65 kg liveweight (Experiment 4).
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Figure 13: Effect of dietary energy density and sex on growth  performance 
of females housed in group pens from 65 kg liveweight (Experiment 4).
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Figure 14:  Effect of dietary energy density and sex on slaughter performance 
of finishers housed in group pens from 65 kg liveweight (Experiment 4).
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Figure 15:  Effect of daily digestible energy intake on growth rate in group 
housed pigs from 65-100kg (Experiment 4)
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4.4 DISCUSSION 
 
 

4.4.1  Individual housed pigs 
 
The growth rate of finisher pigs housed in individual pens did not significantly change over the 

dietary energy density range investigated but feed conversion declined with increasing dietary energy 

density. Feed intake was not significantly affected by energy density of the diet, which is in contrast 

to the result seen in grower pigs (experiment 1).  There was, however a numerical difference in rate 

of gain due to the fact that digestible energy intake linearly increased with energy density in this 

experiment (Table 16). Growth rate was linearly related to digestible energy intake (figure 11). This 

suggests that for modern pig genotypes in individual pens there are factors other than energy 

demand influencing the total digestible energy intake. These factors are likely to include a gut fill 

limitation on the heavier pig, which is not overcome until the highest energy density of the diet is 

offered to the animals.  

The significant increases in P2 change over the 6 week period of the experiment indicate that while 

the feed efficiency of the animals is improving the efficiency in terms of energy utilisation is 

diminishing (Table 16). The change in energy utilisation is linked to the total body fat as represented 

by P2. The higher the P2 in the carcass the poorer the energy utilisation which would be expected 

since in terms of energy it costs more to deposit fat than lean. 

The cost per unit of gain generally increases for each increase in dietary energy density and generally 

reflects that the decrease in feed to gain is not sufficient enough to overcome the effect of the 

increasing feed cost. However, this does not take into account the effect of any increase in growth 

rate and carcass characteristics. The relative changes in dietary energy density and diet cost will also 

be influenced by the availability and price of different ingredients. 
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The variation in carcass weight between the sexes showed a positive trend for females but a more 

quadratic effect in males. The results mirrored the energy utilisation indicating that energy, as 

expected is the major driver of carcass weight. This increase in carcass weight does not fit the 

classical theory and is a reflection of energy intake and utilisation. The effect of dressing percentage 

appears to be a reflection of the increasing carcass weight and this was used as a co-variant in the 

analysis. However dressing percentage is very important in terms of its economic impact and the 

statistics still imply a positive relationship between dressing percentage and dietary energy content. 

The results suggest that maximising dietary energy intake will maximise growth rate and carcass 

weight but at a cost in terms of increased carcass fatness. Increases in dietary energy density relative 

to the increase in energy intake does not lead to an increase in growth rate for animals housed in 

individual pens. There was an unexplained environmental factor that may have limited feed intake 

to levels below that recorded previously in this facility. The significant effect of dietary energy 

density on feed to gain may be related to the capacity for fat deposition in the finisher pig. Thus 

efficiency of utilisation of energy is dependent on the fat status and rate of deposition in the body at 

any point in time. 

4.4.2 Group housed pigs 

The results showed that growth rate increased linearly with increasing dietary energy density. There 

was no significant difference in feed intake across any of the energy density levels although there 

was a significant decrease in feed to gain to the highest level of energy density. The decrease in feed 

intake at the 15.2 MJDE/kg may have been associated with the physical quality of this diet, which 

had a higher percentage of broken pellets and dust and thus feed wastage was proportionally higher 

for this diet. These findings are in contrast to the classical theory that increasing energy density 

results in a consistent decline in feed intake. The present results suggest that under commercial 
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conditions feed intake is maintained with increasing energy density of the diet and maybe 

constrained more by physical or social constraints than by physiological constraints. 

The improvement in carcass weight with increasing dietary energy density reflects growth rate 

responses with males tending to respond up to 14.4 MJDE/kg and females up to 15.2 MJDE/kg. 

Fat depth also increased with increasing dietary energy density although it was also associated with 

increasing carcass weight. Fat thickness was no longer significant when carcass weight was taken as 

a covariate.   

The linear increase in dressing percentage with increasing dietary energy density seen in the 

experiment is also a reflection of the increasing carcass weight when taken on a group basis. 

However, the result from the individual pigs showed that dressing percentage increased significantly 

with increasing energy density of the diet when carcass weight was taken as a covariate and this 

relationship needs to be further investigated. 

The utilisation of energy when pigs are kept in groups tends to be more efficient compared to 

animals housed in individual pens and reflects the fact that the feed intake is likely to be limited 

when pigs are housed in group pens. The drop in efficiency with the highest level of dietary energy 

density is likely not a true reflection as feed wastage was higher in this treatment due to the high 

level of fat in the diet resulting in a poor durability pellet and thus more fine particles in the feed in 

front of the animals.  

The cost per unit gain (Table 22) reflects that diet cost increases with increasing energy density 

levels and the reduction in feed to gain can not adequately adjust for the increases in diet costs. 

However, this does not take into account the effect of any increase in growth rate and carcass 

characteristics. 
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The relationship between digestible energy intake and growth rate for group housed pigs (Figure 

15) indicates that male pigs respond to increasing digestible energy intake at a faster rate than do 

females when in a group housed environment. This suggests that for male pigs there will be a return 

by using strategies to increase energy intake but for female pigs these strategies would be of limited 

use. Any increase in energy intake is likely to increase backfat thickness in female pigs. 

4.4.3 Comparison of group and individually housed pigs. 

The relationship between dietary digestible energy density and feed intake for male finisher pigs in 

individual and group housing is shown in figure 16 and for female pigs in figure 17. In these 

experiments group housed pigs ate more than individually housed pigs. The reason for this is 

unclear for the experimental data and observations. There were no significant differences in intake 

with increasing energy density in finisher pigs housed in individual pens as would be expected from 

the grower experiment and the literature review. The feed intake of pigs in individual pens was 

significantly below expectations for these animals. The significant interaction between feed 

conversion and digestible energy density of the diet indicated that the pigs had still reached a 

maximum growth rate and feed conversion was adjusted rather than feed intake. The results then 

suggest there was some environmental or sub-clinical disease interaction with feed intake in the 

individual pen experiment. For group housed pigs there was no interaction for feed intake and 

digestible energy density but pigs did increase growth rate and improve feed efficiency similar to the 

results of the grower trial.  
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4.4.4 Economic evaluation 

In this experiment the pigs in individual pens did not follow the classical theory of adjustment in 

feed intake to maintain a fixed energy intake but did maintain a constant growth rate. This is in 

opposition to most of the scientific literature and maybe as a result of factors that could not be 

controlled in this experiment. When pigs are placed into group-housed conditions the feed intake 

of the animals is constant unless very high energy densities are fed. In this case growth rate adjusted 

to reflect total energy intake. This is commercially very important as it changes significantly the 

economics of where to aim energy density levels of finisher pigs. The nutritionist has previously 

done the determination of dietary digestible energy density in a more arbitrary manner or by 

determining the least cost per megajoule of digestible energy. To more efficiently take into account 

the effects of changing growth rate and feed conversion a growth modelling system needs to be 

used to determine where the most profitable level will be. This is obviously not at the least cost per 

megajoule (as Auspig would indicate). The other factor not usually considered is the effect of 

energy on dressing percentage or more precisely the growth in carcass rather than liveweight gain 

per se. The present results do not conclusively link increasing energy density with dressing 

percentage although the increase in liveweight seen from increasing energy density will indirectly 

increase carcass weight. There is still enough evidence from these experiments to further investigate 

finisher dietary energy density levels and dressing percentage. 

For commercial evaluation of the results an economic model developed by Bunge Meat Industries 

was used. The model takes into account the effects of growth rate, feed conversion, carcass 

characteristics and diet costs on profit. Auspig has several limitations in determining response due 

to dietary energy densities as it is based on the classical theory and does not take into account the 

limitations on intake and hence growth rate to the degree necessary to make the economic 
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judgments. These results will be used to adjust Auspig to be able to better determine responses in 

this area. 

For the economic analysis the diet cost differences between the high and low diets were adjusted to 

better reflect the model in Figure 16 which is a better representation of the real differences that 

exist over this range of dietary energy densities.  

Figure 16.  Relationship between dietary energy density and raw material cost 

The traditional approach suggested by Auspig indicates that the most profitable dietary energy 

density is at the point where cost per megajoule of digestible energy is lowest. This does not take 

into account the other important responses in growth rate and feed conversion. 

The economic analysis of the data from the group housed animals is shown in Table 23 and 

indicates that the most profitable point under the diet cost conditions is at an energy density of 14 

MJ of digestible energy per kilogram. The optimum point calculated by the economic program was 

13.6 MJDE/kg. This is not a static point as the marginal changes in diet costs are a reflection of the 
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model showed that the changes in dressing percentage associated with the changing liveweight and 

energy density were very influential in determining the optimum dietary energy density. Thus 

indirectly the increase in growth rate had a substantial effect on determining the optimum profit 

point. 

Factors that were not considered in this economic analysis were the effect that lower feed to gain 

would have indirectly on the fixed costs of pig production and also how the actual cost of feed 

could be reduced further due to less total costs associated with the manufacture and delivery of 

feed.  

Table 23 Economic analysis of increasing dietary energy density in finishing pigs for a 
herd of 5000 sows 

 

 

Energy 
Density 

Cost/kg 
carcass 

Profit/kg 
carcass 

Income/kg 
carcass 

Cost Profit Income Herd feed 
conversion

MJDE/kg ($/Kg) ($/Kg) ($/Kg) ($) ($) ($)  
        

12.0 1.694 0.414 2.068 15,359,043 3,756,846 18,750,378 3.76 
12.5 1.673 0.428 2.062 15,547,774 3,980,657 19,162,920 3.73 
13.0 1.657 0.438 2.057 15,714,290 4,159,247 19,508,026 3.69 
13.5 1.647 0.443 2.052 15,876,423 4,275,301 19,786,213 3.64 
14.0 1.646 0.441 2.049 16,059,530 4,303,736 19,997,756 3.59 
14.5 1.656 0.428 2.047 16,299,530 4,208,653 20,142,672 3.53 
15.0 1.684 0.399 2.046 16,646,928 3,939,298 20,220,715 3.47 

        
The model does increase the profit figures by a fixed amount to account for sales of cull animals. 
This was held constant across all energy densities but not reported in cost or income values. 
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C h a p t e r  5  

IMPLICATIONS 

The determination of energy density of grower and finisher feed was often thought not to be of 

major concern to nutritionists as they aimed at producing feed with the lowest cost per megajoule 

of digestible energy. The result was that the pig would eat to a desired energy intake per day 

regardless of the energy density of the feed. The lowest cost per megajoule of digestible energy 

would then ensure that the feed supplied produced the lowest cost per kilogram of liveweight gain. 

Under “ideal” conditions, simulated through the use of individually housed animals, this is the case 

and has been shown in figure 17 for grower pigs. The limitations to this appear to be at the 

extremes of energy density where feed intake capacity and the physical characteristics of the feed 

can limit the intake. In our experiments in the finisher pig kept in individual pens digestible energy 

intake per day with increased with greater energy density (Figure 19). The feed intake in this 

experiment was actually below that of group housed pigs which suggests that feed intake was 

constrained by factors not discernable in this experimental design: for example subclinical disease 

may have influenced this result. The proportional increases in energy intake with energy density 

observed in finisher pigs is in contrast to that reported previously (Cole et al., 1971; Owen and 

Ridgman 1967). 

Placing pigs into groups does reduce the feed intake of the pig as compared to that in individual 

pens by approximately 10%. This reduction appears to be a result of the social stress resulting from 

group dynamics and can not be influenced by changing dietary energy density as with individually 

pened animals. Thus as the energy density of the feed is increased the daily energy intake of the pig 

also increases (figure 18, figure 20). This results in a change in either the growth rate of the pigs or 

carcass composition if maximum protein deposition is approached. The limitation of feed intake 
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that occurs in group housed situations is most noticeable between dietary energy densities of 13.0 

and 14.5 MJ DE/kg. Outside this range the higher fibre content of the low energy diets has the 

same gut limitations as would be expected in individual housed pigs and the high fat content of the 

high energy density diets tends to influence the physical quality of the diet and therefore feed intake.   

Increasing daily digestible energy intake in pigs during the finisher stage in particular increases the 

fat status of the animal as represented by the P2 fat depth measurement. This change is very 

important in markets that seek leaner pigs. This has a genetic component to it in terms of the 

capacity of the genotype to deposit lean, which will be negatively correlated to the propensity to 

fatten at any given level of daily digestible energy intake. Feed intake is also under genetic control 

and in general the leaner genotypes tend to eat less and therefore have a lower daily digestible 

energy intake and as a result deposit less fat than older genotypes. 

The implications from this work are that a change in methodology is required when determining 

the optimum dietary digestible energy density for growing and finishing pigs. The use of simulation 

models such as Auspig will become essential in determining the optimum dietary digestible energy 

density when the model can be adjusted to more accurately reflect the limitations seen in group 

situations on feed intake. In terms of overall throughput and total inputs the results suggest a move 

towards higher energy density diets for finisher pigs: this is likely to have a marked positive effect 

on the profitability of most pig meat businesses. The limitation on this will be the quality (fat status) 

of carcass accepted by markets will accept. 

Further work is required to examine the difference that may occur in the maintenance energy 

requirement between male and female pigs that is suggested by figure 11 and figure 15. However 

this must be confirmed with specifically designed studies. Further work is also suggested on the 

effect of energy density on the portioning of protein and fat between visceral and skeletal 
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components of the carcass. Undoubted this will have a major impact on feed utilisation for the pig 

industry in the future. 

Figure 17. Schematic of the relationship between the effect of 
digestible energy density on feed intake and digestible energy 

intake in male grower pigs housed in individual pens
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Figure 18. Schematic of the relationship between the effect of 
digestible energy density on feed intake and digestible energy 

intake in male grower pigs housed in group pens
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Figure 19. Schematic of the relationship between the effect of 
digestible energy density on feed intake and digestible energy 

intake in male finisher pigs housed in individual pens
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Figure 20. Schematic of the relationship between the effect of 
digestible energy density on feed intake and digestible energy 

intake in male finisher pigs housed in group pens
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Optimal nutritional management of "finisher" pig is constrained by lack of quantitative information 
on the response of animals between 65 and 110 kg live weight to dietary energy content. Under "ideal" 
conditions modern genotypes appear to adjust feed intake to maintain a constant DE intake over a much 
wider range of dietary energy concentrations than previously thought (Mullan et al, 1998). However, under 
commercial pen conditions, voluntary feed intake is lower, pigs respond in terms of both growth rate and 
feed conversion to dietary DE density considerably above the levels currently thought to maximise biological 
and economic responses. The present study was designed to provide information on the response of finisher 
pigs to dietary energy content under commercial housing conditions. 
Five hundred female and male pigs allocated to five levels of dietary DE density (12.0, 12.8, 13.6, 14.4 and 
15.2 MJDE/kg. Pigs were kept in commercial pens of 10 animals per pen. The diets were offered ad 
libitum to animals for six weeks commencing at 16 weeks of age and treatment effects were assessed for 
growth performance. 
 
Table 1. Effects of dietary energy density and sex on growth performance of pigs offered feed 
adlibitum for 42 days from 65 kg housed in commercial conditions. 

Sex Dietary Energy Start Lwt 42 day Lwt Daily Gain Feed to Gain Feed Intake 
 (MJDE/Kg) (kg) (kg) (Kg/d)  (kg/d) 

Males 12.0 62.1 95.3 0.824 2.989 2.456 
 12.8 62.2 99.4 0.926 2.767 2.564 
 13.6 62.0 101.3 0.982 2.634 2.581 
 14.4 62.4 102.7 1.002 2.481 2.484 
 15.2 62.0 102.0 0.995 2.456 2.436 

       
Females 12.0 64.1 96.9 0.806 3.161 2.535 

 12.8 64.2 97.7 0.826 3.068 2.525 
 13.6 64.0 100.3 0.889 2.921 2.601 
 14.4 64.1 101.0 0.902 2.826 2.537 
 15.2 64.2 101.3 0.909 2.725 2.471 

Significance 1   ** ** ** NS 
1 Dietary Energy effect only.  NS- Not Significant **P<0.001 
 

The results showed that growth rate increased linearly with increasing dietary energy density. There 
was a tendency for a plateau in growth rate at 14.4 MJDE/kg. There was no significant difference in feed 
intake across any of the energy density levels, although there was a significant increase in feed efficiency at 
the highest level of energy density. The decrease in feed intake at the 15.2 MJDE/kg may not have been real 
as the physical quality of this diet was very poor and feed wastage was observed to be higher for this diet. 
These findings are in contrast to the classical theory that increasing energy density would result in a 
consistent decline in feed intake. Feed intake maybe restricted more by physical or social rather than 
physiological constraints. 
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