23 research outputs found

    Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight

    Get PDF
    Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (P-Bonferroni <1.06 x 10(-7)). In additional analyses in 7,278 participants,Peer reviewe

    Nonequilibrium capillarity effects in two?phase flow through porous media at different scales

    No full text
    A series of primary drainage experiments was carried out in order to investigate nonequilibrium capillarity effects in two?phase flow through porous media. Experiments were performed with tetrachloroethylene (PCE) and water as immiscible fluids in a sand column 21 cm long. Four drainage experiments were performed by applying large pressures on the nonwetting phase at the inlet boundary: 20, 30, 35, 38 kPa. Our results showed that the nonequilibrium local fluids pressure difference?saturation curves are above the capillary pressure saturation curve. Moreover, the nonequilibrium pressure difference showed a nonmonotonic behavior with an overshoot that was more pronounced at higher injection pressures. The dynamic capillarity coefficient Ď„{\tau} was calculated from measured local pressures and saturations (the scale of sensor devices, 0.7 cm). Its value was found to vary between 1.3 Ă— 10^5 to 2 Ă— 10^5 Pa s. Within the saturation range of 0.50 > Sw > 0.85, no clear dependency of the dynamic coefficient on the wetting saturation was observed. Also, no dependency of the dynamic capillarity coefficient on the applied boundary pressure was found. Averaged values of [Ď„][\tau] at the length scales of 11 and 18 cm were also estimated from averaged pressures and saturations. The upscaled dynamic coefficient was found to vary between 0.5 Ă— 10^6 and 1.2 Ă— 10^6 Pa s at the average window size of 11 cm. This is one order of magnitude larger than the local?scale coefficient. Larger values were found for the length scale of 18 cm: 1.5 Ă— 10^6 and 2.5 Ă— 10^6 Pa s. This suggests that the value of dynamic coefficient increases with the scale of observation.BT/BiotechnologyApplied Science

    Mitogen-activated protein kinase and abscisic acid signal transduction.

    No full text
    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C), calcium, potassium, pH and a transient activation of MAP kinase. The ABA signal transduction cascades have been shown to be tissue-specific, the transient activation of MAP kinase has until now only been found in barley aleurone cells. However, type 2C phosphatases are involved in the induction of most ABA responses, as shown by the PP2C-deficient abi-mutants. These phosphatases show high homology with phosphatases that regulate MAP kinase activity in yeast. In addition, the role of farnesyl transferase as a negative regulator of ABA responses also indicates towards involvement of MAP kinase in ABA signal transduction. Farnesyl transferase is known to regulate Ras proteins, Ras proteins in turn are known to regulate MAP kinase activation. Interestingly, Ras-like proteins were detected in barley aleurone cells. Further establishment of the involvement of MAP kinase in ABA signal transduction and its role therein, still awaits more study.</p
    corecore