608 research outputs found
Periodic Radio and H-alpha Emission from the L Dwarf Binary 2MASSW J0746425+200032: Exploring the Magnetic Field Topology and Radius of an L Dwarf
[Abridged] We present an 8.5-hour simultaneous radio, X-ray, UV, and optical
observation of the L dwarf binary 2MASSW J0746+20. We detect strong radio
emission, dominated by short-duration periodic pulses at 4.86 GHz with
P=124.32+/-0.11 min. The stability of the pulse profiles and arrival times
demonstrates that they are due to the rotational modulation of a B~1.7 kG
magnetic field. A quiescent non-variable component is also detected, likely due
to emission from a uniform large-scale field. The H-alpha emission exhibits
identical periodicity, but unlike the radio pulses it varies sinusoidally and
is offset by exactly 1/4 of a phase. The sinusoidal variations require
chromospheric emission from a large-scale field structure, with the radio
pulses likely emanating from the magnetic poles. While both light curves can be
explained by a rotating mis-aligned magnetic field, the 1/4 phase lag rules out
a symmetric dipole topology since it would result in a phase lag of 1/2
(poloidal field) or zero (toroidal field). We therefore conclude that either
(i) the field is dominated by a quadrupole configuration, which can naturally
explain the 1/4 phase lag; or (ii) the H-alpha and/or radio emission regions
are not trivially aligned with the field. Regardless of the field topology, we
use the measured period along with the known rotation velocity (vsini=27 km/s),
and the binary orbital inclination (i=142 deg), to derive a radius for the
primary star of 0.078+/-0.010 R_sun. This is the first measurement of the
radius of an L dwarf, and along with a mass of 0.085+/-0.010 M_sun it provides
a constraint on the mass-radius relation below 0.1 M_sun. We find that the
radius is about 30% smaller than expected from theoretical models, even for an
age of a few Gyr.Comment: Submitted to Ap
Chromospheric Variability in SDSS M Dwarfs. II. Short-Timescale H-alpha Variability
[Abridged] We present the first comprehensive study of short-timescale
chromospheric H-alpha variability in M dwarfs using the individual 15 min
spectroscopic exposures for 52,392 objects from the Sloan Digital Sky Survey.
Our sample contains about 10^3-10^4 objects per spectral type bin in the range
M0-M9, with a total of about 206,000 spectra and a typical number of 3
exposures per object (ranging up to a maximum of 30 exposures). Using this
extensive data set we find that about 16% of the sources exhibit H-alpha
emission in at least one exposure, and of those about 45% exhibit H-alpha
emission in all of the available exposures. Within the sample of objects with
H-alpha emission, only 26% are consistent with non-variable emission,
independent of spectral type. The H-alpha variability, quantified in terms of
the ratio of maximum to minimum H-alpha equivalent width (R_EW), and the ratio
of the standard deviation to the mean (sigma_EW/), exhibits a rapid rise
from M0 to M5, followed by a plateau and a possible decline in M9 objects. In
particular, R_EW increases from a median value of about 1.8 for M0-M3 to about
2.5 for M7-M9, and variability with R_EW>10 is only observed in objects later
than M5. For the combined sample we find that the R_EW values follow an
exponential distribution with N(R_EW) exp[-(R_EW-1)/2]; for M5-M9 objects the
characteristic scale is R_EW-1\approx 2.7, indicative of stronger variability.
In addition, we find that objects with persistent H-alpha emission exhibit
smaller values of R_EW than those with intermittent H-alpha emission. Based on
these results we conclude that H-alpha variability in M dwarfs on timescales of
15 min to 1 hr increases with later spectral type, and that the variability is
larger for intermittent sources.Comment: Submitted to ApJ; 20 pages, 15 figure
Extremely low longâterm erosion rates around the Gamburtsev Mountains in interior East Antarctica
The high elevation and rugged relief (>3 km) of the Gamburtsev Subglacial Mountains (GSM) have long been considered enigmatic. Orogenesis normally occurs near plate boundaries, not cratonic interiors, and largeâscale tectonic activity last occurred in East Antarctica during the PanâAfrican (480â600 Ma). We sampled detrital apatite from Eocene sands in Prydz Bay at the terminus of the Lambert Graben, which drained a large preâglacial basin including the northern Gamburtsev Mountains. Apatite fissionâtrack and (UâTh)/He cooling ages constrain bedrock erosion rates throughout the catchment. We doubleâdated apatites to resolve individual cooling histories. Erosion was very slow, averaging 0.01â0.02 km/Myr for >250 Myr, supporting the preservation of high elevation in interior East Antarctica since at least the cessation of Permian rifting. Longâterm topographic preservation lends credence to postulated highâelevation mountain ice caps in East Antarctica since at least the Cretaceous and to the idea that coldâbased glaciation can preserve tectonically inactive topography
Simultaneous Multi-Wavelength Observations of Magnetic Activity in Ultracool Dwarfs. III. X-ray, Radio, and H-alpha Activity Trends in M and L Dwarfs
[Abridged] As part of our on-going investigation into the magnetic field
properties of ultracool dwarfs, we present simultaneous radio, X-ray, and
H-alpha observations of three M9.5-L2.5 dwarfs (BRI0021-0214,
LSR060230.4+391059, and 2MASSJ052338.2-140302). We do not detect X-ray or radio
emission from any of the three sources, despite previous detections of radio
emission from BRI0021 and 2M0523-14. Steady and variable H-alpha emission are
detected from 2M0523-14 and BRI0021, respectively, while no H-alpha emission is
detected from LSR0602+39. Overall, our survey of nine M8-L5 dwarfs doubles the
number of ultracool dwarfs observed in X-rays, and triples the number of L
dwarfs, providing in addition the deepest limits to date, log(L_X/L_bol)<-5.
With this larger sample we find the first clear evidence for a substantial
reduction in X-ray activity, by about two orders of magnitude, from mid-M to
mid-L dwarfs. We find that the decline in both X-rays and H-alpha roughly
follows L_{X,Halpha}/L_bol ~ 10^[-0.4x(SP-M6)] for SP>M6. In the radio band,
however, the luminosity remains relatively unchanged from M0 to L4, leading to
a substantial increase in L_rad/L_bol. Our survey also provides the first
comprehensive set of simultaneous radio/X-ray/H-alpha observations of ultracool
dwarfs, and reveals a clear breakdown of the radio/X-ray correlation beyond
spectral type M7, evolving smoothly from L_{\nu,rad}/L_X ~ 10^-15.5 to
~10^-11.5 Hz^-1 over the narrow spectral type range M7-M9. This breakdown
reflects the substantial reduction in X-ray activity beyond M7, but its
physical origin remains unclear since, as evidenced by the uniform radio
emission, there is no drop in the field dissipation and particle acceleration
efficiency.Comment: Submitted to ApJ; 19 pages, 10 figures, 5 table
Estimation of Carbon Sequestration by Combining Remote Sensing and Net Ecosystem Exchange Data for Northern Mixed-Grass Prairie and SagebrushâSteppe Ecosystems
Carbon sequestration was estimated a northern mixed-grass prairie site and a sagebrushâsteppe site in southeastern Wyoming using an approach that integrates remote sensing, CO2 flux measurements, and meteorological data. Net ecosystem exchange (NEE) of CO2 was measured using aircraft and ground flux techniques and was linearly related to absorbed photosynthetically active radiation (APAR). The slope of this relationship is the radiation use efficiency (Δ = 0.51 g C/MJ APAR); there were no significant differences in the regression coefficients between the two sites. Furthermore, ecosystem chamber measurements of total respiration in 1998 and 1999 were used to develop a functional relationship with daily average temperature; the Q10 of the relationship was 2.2. Using the Advanced Very High Resolution radiometer. Normalized Difference Vegetation Index and meteorological data, annual gross primary production and respiration were calculated from 1995 to 1999 for the two sites. Overall, the sagebrushâ steppe site was a net carbon sink, whereas the northern mixed-grass prairie site was in carbon balance. There was no significant relationship between NEE and APAR for a coniferous forest site, indicating this method for scaling up CO2 flux data may be only applicable to rangeland ecosystems. The combination of remote sensing with data from CO2 flux networks can be used to estimate carbon sequestration regionally in rangeland ecosystems
Rotational Velocities of Individual Components in Very Low Mass Binaries
We present rotational velocities for individual components of 11 very low mass (VLM) binaries with spectral types between M7 and L7.5. These results are based on observations taken with the near-infrared spectrograph, NIRSPEC, and the Keck II laser guide star adaptive optics system. We find that the observed sources tend to be rapid rotators (v sin i > 10 km s^(â1)), consistent with previous seeing-limited measurements of VLM objects. The two sources with the largest v sin i, LP 349â25B and HD 130948C, are rotating at ~30% of their break-up speed, and are among the most rapidly rotating VLM objects known. Furthermore, five binary systems, all with orbital semimajor axes âŸ3.5 AU, have component v sin i values that differ by greater than 3Ï. To bring the binary components with discrepant rotational velocities into agreement would require the rotational axes to be inclined with respect to each other, and that at least one component is inclined with respect to the orbital plane. Alternatively, each component could be rotating at a different rate, even though they have similar spectral types. Both differing rotational velocities and inclinations have implications for binary star formation and evolution. We also investigate possible dynamical evolution in the triple system HD 130948AâBC. The close binary brown dwarfs B and C have significantly different v sin i values. We demonstrate that components B and C could have been torqued into misalignment by the primary star, A, via orbital precession. Such a scenario can also be applied to another triple system in our sample, GJ 569AâBab. Interactions such as these may play an important role in the dynamical evolution of VLM binaries. Finally, we note that two of the binaries with large differences in component v sin i, LP 349â25AB and 2MASS 0746+20AB, are also known radio sources
Cluster ionization via two-plasmon excitation
We calculate the two-photon ionization of clusters for photon energies near
the surface plasmon resonance. The results are expressed in terms of the
ionization rate of a double plasmon excitation, which is calculated
perturbatively. For the conditions of the experiment by Schlipper et al., we
find an ionization rate of the order of 0.05-0.10 fs^(-1). This rate is used to
determine the ionization probability in an external field in terms of the
number of photons absorbed and the duration of the field. The probability also
depends on the damping rate of the surface plasmon. Agreement with experiment
can only be achieved if the plasmon damping is considerably smaller than its
observed width in the room-temperature single-photon absorption spectrum.Comment: 17 pages and 6 PostScript figure
Concept and optical design of the cross-disperser module for CRIRES
This is the peer reviewed version of the following article: Oliva, Ernesto, A. Tozzi, D. Ferruzzi, L. Origlia, A. Hatzes, R. Follert, T. Loewinger et al. "Concept and optical design of the cross-disperser module for CRIRES+." In SPIE Astronomical Telescopes+ Instrumentation, pp. 91477R-91477R. International Society for Optics and Photonics, 2014, which has been published in final form at 10.1117/12.2054381
The radial distribution of dust species in young brown dwarf disks
We present a study of the radial distribution of dust species in young brown
dwarf disks. Our work is based on a compositional analysis of the 10 and 20
micron silicate emission features for brown dwarfs in the Taurus-Auriga
star-forming region. A fundamental finding of our work is that brown dwarfs
exhibit stronger signs of dust processing in the cold component of the disk,
compared to the higher mass T Tauri stars in Taurus. For nearly all of our
targets, we find a flat disk structure, which is consistent with the stronger
signs of dust processing observed in these disks. For the case of one brown
dwarf, 2M04230607, we find the forsterite mass fraction to be a factor of ~3
higher in the outer disk compared to the inner disk region. Simple large-scale
radial mixing cannot account for this gradient in the dust chemical
composition, and some local crystalline formation mechanism may be effective in
this disk. The relatively high abundance of crystalline silicates in the outer
cold regions of brown dwarf disks provides an interesting analogy to comets. In
this context, we have discussed the applicability of the various mechanisms
that have been proposed for comets on the formation and the outward transport
of high-temperature material. We also present Chandra X-ray observations for
two Taurus brown dwarfs, 2M04414825 and CFHT-BD-Tau 9. We find 2M04414825,
which has a ~12% crystalline mass fraction, to be more than an order of
magnitude brighter in X-ray than CFHT-BD-Tau 9, which has a ~35% crystalline
mass fraction. Combining with previous X-ray data, we find the inner disk
crystalline mass fractions to be anti-correlated with the X-ray strength.Comment: Accepted in MNRA
- âŠ