28 research outputs found

    Small-Scale X-ray Variability in the Cassiopeia A Supernova Remnant

    Get PDF
    A comparison of X-ray observations of the Cassiopeia A supernova remnant taken in 2000, 2002, and 2004 with the Chandra ACIS-S3 reveals the presence of several small scale features (<= 10 arcsec) which exhibit significant intensity changes over a 4 year time frame. Here we report on the variability of six features, four of which show count rate increases from ~ 10% to over 90%, and two which show decreases of ~ 30% -- 40%. While extracted 1-4.5 keV X-ray spectra do not reveal gross changes in emission line strengths, spectral fits using non-equilibrium ionization, metal-rich plasma models indicate increased or decreased electron temperatures for features showing increasing or decreasing count rates, respectively. Based on the observed count rate changes and the assumption that the freely expanding ejecta has a velocity of ~ 5000 km/s at the reverse shock front, we estimate the unshocked ejecta to have spatial scale variations of 0.02 - 0.03 pc, which is consistent with the X-ray emitting ejecta belonging to a more diffuse component of the supernova ejecta than that seen in the optically emitting ejecta, which have spatial scales ~ 0.001 pc.Comment: 9 pages, 8 figures, to be published in Astronomical Journa

    First Fruits of the Spitzer Space Telescope: Galactic and Solar System Studies

    Get PDF
    This article provides a brief overview of the Spitzer Space Telescope and discusses its initial scientific results on galactic and solar system science.Comment: Review article to appear in slightly different format in Vol.44 of Annual Reviews of Astronomy and Astrophysics, 200

    P-Process Nucleosynthesis inside Supernova-Driven Supercritical Accretion Disks

    Get PDF
    We investigate p-process nucleosynthesis in a supercritical accretion disk around a compact object of 1.4 M_solar, using the self-similar solution of an optically thick advection dominated flow. Supercritical accretion is expected to occur in a supernova with fallback material accreting onto a new-born compact object. It is found that appreciable amounts of p-nuclei are synthesized via the p-process in supernova-driven supercritical accretion disks (SSADs) when the accretion rate m_dot = M_dot c^2/(16 L_Edd) >10^5, where L_Edd is the Eddington luminosity. Abundance profiles of p-nuclei ejected from SSADs have similar feature to those of the oxygen/neon layers in Type II supernovae when the abundance of the fallback gas far from the compact object is that of the oxygen/neon layers in the progenitor. The overall abundance profile is in agreement with that of the solar system. Some p-nuclei, such as Mo, Ru, Sn, and La, are underproduced in the SSADs as in Type II supernovae. If the fallback gas is mixed with a small fraction of proton through Rayleigh-Taylor instability during the explosion, significant amounts of Mo92 are produced inside the SSADs. Ru96 and La138 are also produced when the fallback gas contains abundant proton though the overall abundance profile of p-nuclei is rather different from that of the solar system. The p-process nucleosynthesis in SSADs contributes to chemical evolution of p-nuclei, in particular Mo92, if several percents of fallback matter are ejected via jets and/or winds.Comment: 15 pages, 7 figures included, 3 tables, LaTeX emulateapj5.sty, accepted for publication by the Astronomical Journal (March, 2003

    High Resolution mid-Infrared Imaging of SN 1987A

    Full text link
    Using the Thermal-Region Camera and Spectrograph (T-ReCS) attached to the Gemini South 8m telescope, we have detected and resolved 10 micron emission at the position of the inner equatorial ring (ER) of supernova SN 1987A at day 6067. ``Hot spots'' similar to those found in the optical and near-IR are clearly present. The morphology of the 10 micron emission is globally similar to the morphology at other wavelengths from X-rays to radio. The observed mid-IR flux in the region of SN1987A is probably dominated by emission from dust in the ER. We have also detected the ER at 20 micron at a 4 sigma level. Assuming that thermal dust radiation is the origin of the mid-IR emission, we derive a dust temperature of 180^{+20}_{-10} K, and a dust mass of 1.- 8. 10^{-5} Mo for the ER. Our observations also show a weak detection of the central ejecta at 10 micron. We show that previous bolometric flux estimates (through day 2100) were not significantly contaminated by this newly discovered emission from the ER. If we assume that the energy input comes from radioactive decays only, our measurements together with the current theoretical models set a temperature of 90 leq T leq 100 K and a mass range of 10^{-4} - 2. 10^{-3} Mo for the dust in the ejecta. With such dust temperatures the estimated thermal emission is 9(+/-3) 10^{35} erg s^{-1} from the inner ring, and 1.5 (+/-0.5) 10^{36} erg s^{-1} from the ejecta. Finally, using SN 1987A as a template, we discuss the possible role of supernovae as major sources of dust in the Universe.Comment: aastex502, 14 pages, 4 figures; Accepted for publication in ApJ Content changed: new observations, Referee's comments and suggestion

    Spitzer Spectral Mapping of Supernova Remnant Cassiopeia A

    Get PDF
    We present the global distribution of fine structure infrared line emission in the Cassiopeia A supernova remnant using data from the Spitzer Space Telescope's Infrared Spectrograph. We identify emission from ejecta materials in the interior, prior to their encounter with the reverse shock, as well as from the post-shock bright ring. The global electron density increases by >~100 at the shock to ~10^4 cm^-3, providing evidence for strong radiative cooling. There is also a dramatic change in ionization state at the shock, with the fading of emission from low ionization interior species like [SiII], giving way to [SIV] and, at even further distances, high-energy X-rays from hydrogenic silicon. Two compact, crescent-shaped clumps with highly enhanced neon abundance are arranged symmetrically around the central neutron star. These neon crescents are very closely aligned with the "kick" direction of the compact object from the remnant's expansion center, tracing a new axis of explosion asymmetry. They indicate that much of the apparent macroscopic elemental mixing may arise from different compositional layers of ejecta now passing through the reverse shock along different directions.Comment: 9 pages, 8 figures, accepted by Ap

    Measuring Dust Production in the Small Magellanic Cloud Core-Collapse Supernova Remnant 1E 0102.2-7219

    Full text link
    We present mid-infrared spectral mapping observations of the core-collapse supernova remnant 1E 0102.2-7219 in the Small Magellanic Cloud using the InfraRed Spectrograph (IRS) on the Spitzer Space Telescope. The remnant shows emission from fine structure transitions of neon and oxygen as well as continuum emission from dust. Comparison of the mid-IR dust emission with observations at x-ray, radio and optical wavelengths shows that the dust is associated with the supernova ejecta and is thus newly formed in the remnant. The spectrum of the newly formed dust is well reproduced by a model that includes 3x10^-3 solar masses of amorphous carbon dust at 70 K and 2x10^-5 solar masses of Mg2SiO4 (forsterite) at 145 K. Our observations place a lower limit on the amount of dust in the remnant since we are not sensitive to the cold dust in the unshocked ejecta. We compare our results to observations of other core-collapse supernovae and remnants, particularly Cas A where very similar spectral mapping observations have been carried out. We observe a a factor of ~10 less dust in E 0102 than seen in Cas A, although the amounts of amorphous carbon and forsterite are comparable.Comment: submitted to Ap

    Spitzer IRAC Images and Sample Spectra of Cassiopeia A's Explosion

    Get PDF
    We present Spitzer IRAC images, along with representative 5.27 to 38.5 micron IRS spectra of the Cassiopeia A supernova remnant. We find that various IRAC channels are each most sensitive to a different spectral and physical component. Channel 1 (3.6 micron) matches radio synchrotron images. Where Channel 1 is strong with respect to the other channels, the longer-wavelength spectra show a broad continuum gently peaking around 26 micron, with weak or no lines. We suggest that this is due to un-enriched progenitor circumstellar dust behind the outer shock, processed by shock photons and electrons. Where Channel 4 (8 micron) is bright relative to the other IRAC channels, the long-wavelength spectra show a strong, 2-3 micron-wide peak at 21 micron, likely due to silicates and proto-silicates, as well as strong ionic lines of [Ar II], [Ar III], [S IV] and [Ne II]. In these locations, the dust and ionic emission originate from the explosion's O-burning layers. The regions where Channels 2 (4.5 micron) and 3 (5.6 micron) are strongest relative to Channel 4 show a spectrum that rises gradually to 21 micron, and then flattens or rises more slowly to longer wavelengths, along with higher ratios of [Ne II] to [Ar II]. Dust and ionic emission in these locations arise primarily from the C- and Ne- burning layers. These findings are consistent with asymmetries in the explosion producing variations in the velocity structure in different directions, but preserving the nucleosynthetic layers. At each location, the dust and ionic lines in the mid-infrared, and the hotter and more highly ionized optical and X-ray emission are then dominated by the layer currently encountering the reverse shock in that direction.Comment: 28 pages, 10 figures, accepted in to the Astrophysical Journal. For full-resolution images, please see http://webusers.astro.umn.edu/~jennis/iracpaper.html. Revised to correct an error in reference

    Dust in Supernovae and Supernova Remnants I : Formation Scenarios

    Get PDF
    Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.Peer reviewe

    Dust in Historical Galactic Type Ia Supernova Remnants with Herschel

    Full text link
    The origin of interstellar dust in galaxies is poorly understood, particularly the relative contributions from supernovae and the cool stellar winds of low-intermediate mass stars. Here, we present Herschel PACS and SPIRE photometry at 70-500um of the historical young supernova remnants: Kepler and Tycho; both thought to be the remnants of Type Ia explosion events. We detect a warm dust component in Kepler's remnant with T = 82K and mass 0.0031Msun; this is spatially coincident with thermal X-ray emission optical knots and filaments, consistent with the warm dust originating in the circumstellar material swept up by the primary blast wave of the remnant. Similarly for Tycho's remnant, we detect warm dust at 90K with mass 0.0086Msun. Comparing the spatial distribution of the warm dust with X-rays from the ejecta and swept-up medium, and Ha emission arising from the post-shock edge, we show that the warm dust is swept up interstellar material. We find no evidence of a cool (25-50 K) component of dust with mass >0.07Msun as observed in core-collapse remnants of massive stars. Neither the warm or cold dust components detected here are spatially coincident with supernova ejecta material. We compare the lack of observed supernova dust with a theoretical model of dust formation in Type Ia remnants which predicts dust masses of 0.088(0.017)Msun for ejecta expanding into surrounding densities of 1(5)cm-3. The model predicts that silicon- and carbon-rich dust grains will encounter the interior edge of the observed dust emission at 400 years confirming that the majority of the warm dust originates from swept up circumstellar or interstellar grains (for Kepler and Tycho respectively). The lack of cold dust grains in the ejecta suggests that Type Ia remnants do not produce substantial quantities of iron-rich dust grains and has important consequences for the 'missing' iron mass observed in ejecta.Comment: 17 pages, 14 figures, accepted for publication in MNRAS, final version including corrected typos and reference
    corecore