130 research outputs found

    Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18

    Get PDF
    Massive rotating single stars with an initial metal composition appropriate for the dwarf galaxy I Zw 18 ([Fe/H]=-1.7) are modelled during hydrogen burning for initial masses of 9-300 M_{\odot} and rotational velocities of 0-900 km s1^{-1}. Internal mixing processes in these models were calibrated based on an observed sample of OB-type stars in the Magellanic Clouds. Even moderately fast rotators, which may be abundant at this metallicity, are found to undergo efficient mixing induced by rotation resulting in quasi chemically-homogeneous evolution. These homogeneously-evolving models reach effective temperatures of up to 90 kK during core hydrogen burning. This, together with their moderate mass-loss rates, make them Transparent Wind Ultraviolet INtense stars (TWUIN star), and their expected numbers might explain the observed HeII ionizing photon flux in I Zw 18 and other low-metallicity HeII galaxies. Our slowly rotating stars above \sim80 M_{\odot} evolve into late B- to M-type supergiants during core hydrogen burning, with visual magnitudes up to 19m^{\mathrm{m}} at the distance of I Zw 18. Both types of stars, TWUIN stars and luminous late-type supergiants, are only predicted at low metallicity. Massive star evolution at low metallicity is shown to differ qualitatively from that in metal-rich environments. Our grid can be used to interpret observations of local star-forming dwarf galaxies and high-redshift galaxies, as well as the metal-poor components of our Milky Way and its globular clusters.Comment: accepted for publication in A\&

    Radiation pressure and pulsation effects on the Roche lobe

    Full text link
    Several observational pieces of evidence indicate that specific evolutionary channels which involve Roche lobe overflow are not correctly accounted for by the classical Roche model. We generalize the concept of Roche lobe in the presence of extra forces (caused by radiation pressure or pulsations). By computing the distortion of the equipotential surfaces, we are able to evaluate the impact of these perturbing forces on the stability of Roche-lobe overflow (RLOF). Radiative forces are parametrized through the constant reduction factor that they impose on the gravitational force from the radiating star (neglecting any shielding in case of large optical thickness). Forces imparted by pulsations are derived from the velocity profile of the wind that they trigger. We provide analytical expressions to compute the generalized Roche radius. Depending on the extra force, the Roche-lobe radius may either stay unchanged, become smaller, or even become meaningless (in the presence of a radiatively- or pulsation-driven wind). There is little impact on the RLOF stability.Comment: 11 pages, 13 Postscript figure

    The Multiple Origin of Blue Straggler Stars: Theory vs. Observations

    Full text link
    In this chapter we review the various suggested channels for the formation and evolution of blue straggler stars (BSSs) in different environments and their observational predictions. These include mass transfer during binary stellar evolution - case A/B/C and D (wind Roche-lobe overflow) mass transfer, stellar collisions during single and binary encounters in dense stellar cluster, and coupled dynamical and stellar evolution of triple systems. We also explore the importance of the BSS and binary dynamics in stellar clusters. We review the various observed properties of BSSs in different environments (halo and bulge BSSs, BSSs in globular clusters and BSSs in old open clusters), and compare the current observations with the theoretical predictions for BSS formation. We try to constrain the likely progenitors and processes that play a role in the formation of BSSs and their evolution. We find that multiple channels of BSS formation are likely to take part in producing the observed BSSs, and we point out the strengths and weaknesses of each the formation channel in respect to the observational constraints. Finally we point out directions to further explore the origin of BSS, and highlight eclipsing binary BSSs as important observational tool.Comment: Chapter 11, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    Mass Transfer by Stellar Wind

    Full text link
    I review the process of mass transfer in a binary system through a stellar wind, with an emphasis on systems containing a red giant. I show how wind accretion in a binary system is different from the usually assumed Bondi-Hoyle approximation, first as far as the flow's structure is concerned, but most importantly, also for the mass accretion and specific angular momentum loss. This has important implications on the evolution of the orbital parameters. I also discuss the impact of wind accretion, on the chemical pollution and change in spin of the accreting star. The last section deals with observations and covers systems that most likely went through wind mass transfer: barium and related stars, symbiotic stars and central stars of planetary nebulae (CSPN). The most recent observations of cool CSPN progenitors of barium stars, as well as of carbon-rich post-common envelope systems, are providing unique constraints on the mass transfer processes.Comment: Chapter 7, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    The Leishmania donovani Lipophosphoglycan Excludes the Vesicular Proton-ATPase from Phagosomes by Impairing the Recruitment of Synaptotagmin V

    Get PDF
    We recently showed that the exocytosis regulator Synaptotagmin (Syt) V is recruited to the nascent phagosome and remains associated throughout the maturation process. In this study, we investigated the possibility that Syt V plays a role in regulating interactions between the phagosome and the endocytic organelles. Silencing of Syt V by RNA interference revealed that Syt V contributes to phagolysosome biogenesis by regulating the acquisition of cathepsin D and the vesicular proton-ATPase. In contrast, recruitment of cathepsin B, the early endosomal marker EEA1 and the lysosomal marker LAMP1 to phagosomes was normal in the absence of Syt V. As Leishmania donovani promastigotes inhibit phagosome maturation, we investigated their potential impact on the phagosomal association of Syt V. This inhibition of phagolysosome biogenesis is mediated by the virulence glycolipid lipophosphoglycan, a polymer of the repeating Galβ1,4Manα1-PO4 units attached to the promastigote surface via an unusual glycosylphosphatidylinositol anchor. Our results showed that insertion of lipophosphoglycan into ganglioside GM1-containing microdomains excluded or caused dissociation of Syt V from phagosome membranes. As a consequence, L. donovani promatigotes established infection in a phagosome from which the vesicular proton-ATPase was excluded and which failed to acidify. Collectively, these results reveal a novel function for Syt V in phagolysosome biogenesis and provide novel insight into the mechanism of vesicular proton-ATPase recruitment to maturing phagosomes. We also provide novel findings into the mechanism of Leishmania pathogenesis, whereby targeting of Syt V is part of the strategy used by L. donovani promastigotes to prevent phagosome acidification

    Discovery of Halpha satellite emission in a low state of the SW Sextantis star BB Doradus

    Get PDF
    BB Dor was observed during its low state state in 2009. Signatures of both binary components are revealed in the average optical spectrum; no signature of accretion is observed. Narrow emission lines of Halpha, HeI and Na-D, as well as TiO absorption troughs trace the motion of the irradiated secondary star. We detect two additional components in the Halpha emission line that share many characteristics of similar "satellite" lines observed in the low state of magnetic cataclysmic variables of AM Her type. It is the first time such emission components are detected for an SW Sex star.Comment: 7 pages, 8 figures, accepted by MNRA

    Molecular Networks in FGF Signaling: Flotillin-1 and Cbl-Associated Protein Compete for the Binding to Fibroblast Growth Factor Receptor Substrate 2

    Get PDF
    Fibroblast growth factor receptor substrate 2 (FRS2α) is a signaling adaptor protein that regulates downstream signaling of many receptor tyrosine kinases. During signal transduction, FRS2 can be both tyrosine and threonine phosphorylated and forms signaling complexes with other adaptor proteins and tyrosine phosphatases. We have here identified flotillin-1 and the cbl-associated protein/ponsin (CAP) as novel interaction partners of FRS2. Flotillin-1 binds to the phosphotyrosine binding domain (PTB) of FRS2 and competes for the binding with the fibroblast growth factor receptor. Flotillin-1 knockdown results in increased Tyr phosphorylation of FRS2, in line with the inhibition of ERK activity in the absence of flotillin-1. CAP directly interacts with FRS2 by means of its sorbin homology (SoHo) domain, which has previously been shown to interact with flotillin-1. In addition, the third SH3 domain in CAP binds to FRS2. Due to the overlapping binding domains, CAP and flotillin-1 appear to compete for the binding to FRS2. Thus, our results reveal a novel signaling network containing FRS2, CAP and flotillin-1, whose successive interactions are most likely required to regulate receptor tyrosine kinase signaling, especially the mitogen activated protein kinase pathway

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Evolutionary constraints on the long-period subdwarf B binary PG1018-047

    Get PDF
    We have revisited the sdB+K-star long-period binary PG 1018–047 based on 20 new high-resolution Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph spectra that provided regular coverage over a period of more than 26  m. We refine the period and establish that the orbit is significantly eccentric (P = 751.6 ± 1.9 d and e = 0.049 ± 0.008). A simultaneous fit derived from the narrow metal lines visible in the spectrum of the sdB star and the metal lines in the red part of the spectrum that originate from the companion provides the mass ratio, MMS/MsdB = 1.52 ± 0.04, for the system. From an NLTE model atmosphere analysis of the combined spectra, we find Teff = 29900 ± 330 K, log g = 5.65 ± 0.06 dex and log(nHe/nH) = –3.98 ± 0.16 dex for the primary, consistent with a B-type hot subdwarf star. The spectral contribution of the companion is consistent with a K5V-type star. With the companion having a mass of only ∼ 0.7 M⊙, this system lies close to the boundary below which stable Roche lobe overflow (RLOF) cannot be supported. To model the evolution of such a system, we have extended earlier MESA models towards lower companion masses. We find that both phase-dependent mass loss during RLOF, when 30 to 40 per cent of the available mass is lost through the outer Lagrange point and phase-dependent mass loss during RLOF in combination with a circumbinary disc of maximum MCB = 0.001 M⊙ could have formed the PG 1018–047 binary system
    corecore