344 research outputs found

    Relationship between earth-directed solar eruptions and magnetic clouds at 1AU: A brief review

    Full text link
    We review relationships between coronal mass ejections (CMEs), EIT post eruption arcades, and the coronal neutral line associated with global magnetic field and magnetic clouds near the Earth. Our previous findings indicate that the orientation of a halo CME elongation may correspond to the orientation of the underlyig flux rope. Here we revisit these preliminary reports by comparing orientation angles of elongated LASCO CMEs, both full and partial halos, to the post eruption arcades. Based on 100 analysed events, it was found that the overwhelming majority of halo CMEs are elongated in the direction of the axial field of the post eruptio arcades. Moreover, this conclusion also holds for partial halo CMEs as well as for events that originate further from the disk center. This suggests that the projection effect does not drastically change the appearance of full and partial halos and their imagesstill bear reliable information about the underlying magnetic fields. We also compared orientations of the erupted fields near the Sun and in the interplanetary space and found that the local tiltof the coronal neutral line at 2.5 solar radii is well correlated with the magnetic cloud axis measured near the Earth. We suggest that the heliospheric magnetic fields significantly affect the propagating ejecta. Sometimes, the ejecta may even rotate so that its axis locally aligns itself with the heliospheric current sheet.Comment: 12 pages; 8 figure

    A third one needed?

    Get PDF

    Photospheric Signatures of Granular-scale Flux Emergence and Cancellation at the Penumbral Boundary

    Full text link
    We studied flux emergence events of sub-granular scale in a solar active region. New Solar Telescope (NST) of Big Bear Solar Observatory made it possible to clearly observe the photospheric signature of flux emergence with very high spatial (0".11 at 7057{\AA}) and temporal (15 s) resolution. From TiO observations with the pixel scale of 0".0375, we found several elongated granule-like features (GLFs) stretching from the penumbral filaments of a sunspot at a relatively high speed of over 4 km s-1. After a slender arched darkening appeared at a tip of a penumbral filament, a bright point (BP) developed and quickly moved away from the filament forming and stretching a GLF. The size of a GLF was approximately 0.5" wide and 3" long. The moving BP encountered nearby structures after several minutes of stretching, and a well-defined elongated shape of a GLF faded away. Magnetograms from SDO/HMI and NST/IRIM revealed that those GLFs are photospheric indicators of small-scale flux emergence, and their disappearance is related to magnetic cancellation. From two well-observed events, we describe detailed development of the sub-structures of GLFs, and different cancellation processes that each of the two GLFs underwent.Comment: Accepted for publication in The Astrophysical Journa
    • …
    corecore