107 research outputs found

    The importance of sea ice area biases in 21st century multimodel projections of Antarctic temperature and precipitation

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Climate models exhibit large biases in sea ice area (SIA) in their historical simulations. This study explores the impacts of these biases on multimodel uncertainty in Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble projections of 21st century change in Antarctic surface temperature, net precipitation, and SIA. The analysis is based on time slice climatologies in the Representative Concentration Pathway 8.5 future scenario (2070-2099) and historical (1970-1999) simulations across 37 different CMIP5 models. Projected changes in net precipitation, temperature, and SIA are found to be strongly associated with simulated historical mean SIA (e.g., cross-model correlations of r = 0.77, 0.71, and -0.85, respectively). Furthermore, historical SIA bias is found to have a large impact on the simulated ratio between net precipitation response and temperature response. This ratio is smaller in models with smaller-than-observed SIA. These strong emergent relationships on SIA bias could, if found to be physically robust, be exploited to give more precise climate projections for Antarctica.We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table S1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provided the coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The original CMIP5 data can be accessed through the ESGF data portals (see http://pcmdi-cmip.llnl.gov/cmip5/ availability.html). This study is part of the British Antarctic Survey Polar Science for Planet Earth Programme. It was funded by The UK Natural Environment Research Council (grant reference NE/K00445X/1). We would like to thank Paul Holland for his useful discussions and comments on an earlier version of this manuscript

    Improvements in Circumpolar Southern Hemisphere Extratropical Atmospheric Circulation in CMIP6 Compared to CMIP5

    Get PDF
    One of the major globally relevant systematic biases in previous generations of climate models has been an equatorward bias in the latitude of the Southern Hemisphere (SH) mid‐latitude tropospheric eddy driven westerly jet. The far reaching implications of this for Southern Ocean heat and carbon uptake and Antarctic land and sea ice are key reasons why addressing this bias is a high priority. It is therefore of primary importance to evaluate the representation of the SH westerly jet in the latest generation of global climate and earth‐system models that comprise the Coupled Model Intercomparison Project Phase 6 (CMIP6). In this paper we assess the representation of major indices of SH extratropical atmospheric circulation in CMIP6 by comparison against both observations and the previous generation of CMIP5 models. Indices assessed are the latitude and speed of the westerly jet, variability of the Southern Annular Mode (SAM) and representation of the Amundsen Sea Low (ASL). These are calculated from the historical forcing simulations of both CMIP5 and CMIP6 for time periods matching available observational and reanalysis datasets. From the 39 CMIP6 models available at the time of writing there is an overall reduction in the equatorward bias of the annual mean westerly jet from 1.9° in CMIP5 to 0.4° in CMIP6 and from a seasonal perspective the reduction is clearest in austral spring and summer. This is accompanied by a halving of the bias of SAM decorrelation timescales compared to CMIP5. However, no such overall improvements are evident for the ASL

    Wintertime Southern Hemisphere jet streams shaped by interaction of transient eddies with Antarctic orography

    Get PDF
    The wintertime Southern Hemisphere extratropical circulation exhibits considerable zonal asymmetries. We investigate the roles of various surface boundary conditions in shaping the mean state using a semi-realistic, atmosphere-only climate model. We find, in agreement with previous literature, that tropical sea surface temperature (SST) patterns are an important contributor to the mean state, while mid-latitude SSTs and sea ice extent play a smaller role. Our main finding is that Antarctic orography has a first order effect on the structure of the mid-latitude circulation. In the absence of Antarctic orography, equatorward eddy momentum fluxes associated with the orography are removed and hence convergence of eddy momentum in midlatitudes is reduced. This weakens the Indian Ocean jet, making Rossby wave propagation downstream to the South Pacific less favourable. Consequently the flow stagnates over the mid to high-latitude South Pacific and the characteristic split jet pattern is destroyed. Removing Antarctic orography also results in a substantial warming over East Antarctica partly because transient eddies are able to penetrate further polewards, enhancing poleward heat transport. However, experiments in which a high latitude cooling is applied indicate that these temperature changes are not the primary driver of circulation changes in mid-latitudes. Instead, we invoke a simple barotropic mechanism in which the orographic slope creates an effective potential vorticity gradient which alters the eddy momentum flux

    Potential for Southern Hemisphere climate surprises

    Get PDF
    Climate model results suggest that future climate change in Antarctica will be accompanied by continued strengthening and poleward contraction of the Southern Ocean westerly wind belt. Paleoclimate records suggest past changes in the westerly winds can be abrupt and that healing of the Antarctic ozone hole could lead to poleward contraction of the westerlies and increased meridional atmospheric transport of warm air regionally into Antarctica. An abrupt shift to more meridional circulation could lead to notable changes in moisture availability for extra-Antarctic regions, increased Antarctic ice sheet disintegration and more rapid sea-level rise

    Ice core evidence for significant 100-year regional warming on the Antarctic Peninsula

    Get PDF
    We present a new 150-year, high-resolution, stable isotope record (delta O-18) from the Gomez ice core, drilled on the data sparse south western Antarctic Peninsula, revealing a similar to 2.7 degrees C rise in surface temperatures since the 1950s. The record is highly correlated with satellite-derived temperature reconstructions and instrumental records from Faraday station on the north west coast, thus making it a robust proxy for local and regional temperatures since the 1850s. We conclude that the exceptional 50-year warming, previously only observed in the northern Peninsula, is not just a local phenomena but part of a statistically significant 100-year regional warming trend that began around 1900. A suite of coupled climate models are employed to demonstrate that the 50 and 100 year temperature trends are outside of the expected range of variability from pre-industrial control runs, indicating that the warming is likely the result of external climate forcing. Citation: Thomas, E. R., P. F. Dennis, T. J. Bracegirdle, and C. Franzke (2009), Ice core evidence for significant 100-year regional warming on the Antarctic Peninsula, Geophys. Res. Lett., 36, L20704, doi: 10.1029/2009GL040104

    Improving ice core interpretation using in situ and reanalysis data

    Get PDF
    Back trajectory analysis, provided by the British Atmospheric Data Centre using meteorological parameters from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis ERA-40 (1980-2001) and operational analysis (2002-2006), is used to investigate transport pathways and source regions of climate proxies preserved in a new ice core (Gomez) from the southwestern Antarctic Peninsula. The ECMWF data are compared with automatic weather station data and ice core annual accumulation records to demonstrate that the ECMWF data capture a large proportion of the annual and subseasonal precipitation variability at the site. The back trajectories reveal that precipitation preserved in the ice core accumulation record, and hence climate proxies contained therein, originate from the low-pressure systems from the Bellingshausen Sea transported via circumpolar westerly winds. Hence, precipitation-dependent ice core proxies, such as isotopic composition, will be influenced by both localized sea ice extent and large-scale circulation changes, such as the Southern Annular Mode. Sea ice proxies from the ice core are expected to be dominated by sea ice extent in the Bellingshausen Sea but also influenced by sea ice in the Weddell Sea, with a small proportion of air mass trajectories originating from this region during the summer. Comparison with other ice core sites reveals a stronger influence of easterly transport at more northerly locations, thus explaining the observed differences in snow accumulation records between ice cores and the poor correlation with instrumental records at these sites

    West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing

    Get PDF
    Recent ice loss from the West Antarctic Ice Sheet has been caused by ocean melting of ice shelves in the Amundsen Sea. Eastward wind anomalies at the shelf break enhance the import of warm Circumpolar Deep Water onto the Amundsen Sea continental shelf, which creates transient melting anomalies with an approximately decadal period. No anthropogenic influence on this process has been established. Here, we combine observations and climate model simulations to suggest that increased greenhouse gas forcing caused shelf-break winds to transition from mean easterlies in the 1920s to the near-zero mean zonal winds of the present day. Strong internal climate variability, primarily linked to the tropical Pacific, is superimposed on this forced trend. We infer that the Amundsen Sea experienced decadal ocean ariability throughout the twentieth century, with warm anomalies gradually becoming more prevalent, offering a credible explanation for the ongoing ice loss. Existing climate model projections show that strong future greenhouse gas forcing creates persistent mean westerly shelf-break winds by 2100, suggesting a further enhancement of warm ocean anomalies. These wind changes are weaker under a scenario in which greenhouse gas concentrations are stabilized
    corecore