31 research outputs found

    Microplate assay for quantitation of neutral lipids in extracts from microalgae

    Full text link
    Lipid quantitation is widespread in the algae literature, but popular methods such as gravimetry, gas chromatography and mass spectrometry (GC-MS), and Nile red cell staining suffer drawbacks, including poor quantitation of neutral lipids, expensive equipment, and variable results among algae species, respectively. A high-throughput microplate assay was developed that uses Nile red dye to quantify neutral lipids that have been extracted from algae cells. Because the algal extracts contained pigments that quenched Nile red fluorescence, a mild bleach solution was used to destroy pigments, resulting in a nearly linear response for lipid quantities in the range of 0.75 to 40 μg. Corn oil was used as a standard for quantitation, although other vegetable oils displayed a similar response. The assay was tested on lipids extracted from three species of Chlorella and resulted in close agreement with triacylglycerol (TAG) levels determined by thin layer chromatography. The assay was found to more accurately measure algal lipids conducive to biodiesel production and nutrition applications than the widely used gravimetric assay. Assay response was also consistent among different species, in contrast to Nile red cell staining procedures

    Model studies of the structure and optical properties of the TiO2(110) surface with an adsorbed Ag atom

    No full text
    8 pags., 5 figs., 1 tab. -- 58TH SANIBEL SYMPOSIUMThe present studies of the atomic Ag adsorbate on the substrate TiO2(110) explore the importance of dispersion (or van der Waals) energies for determining the structure of the adsorbed Ag atom, using density functional theory (DFT) supplemented by a dispersion energy treatment, within the PBE-D3 treatment. It is also of interest to explore electronic excitation by light absorption. Electronic density of states (EDOS) are obtained without and with Ag adsorbed on the TiO2(110), to find the extent of change on the density of valence, conduction and intraband states. This is done using the hybrid HSE06 functional, which is known to provide good values for the energy band gap of the substrate. A computationally efficient PBE¿+¿BG procedure for these structures, which corrects the PBE band gap, is implemented to generate accurate EDOSs and light absorption intensities versus photon energies. This is followed by a reduced density matrix treatment of the dissipative dynamics of light absorption, generating state-to-state oscillator strengths and photoabsorbances for the pure and nanostructured TiO2(110) surfaces. Adsorption of Ag leads to a noticeable increase in light absorption at visible wavelengths, and very large increases in the UV region of the spectrum.M. P. D. C. thanks the Fondo Europeo de Desarrollo Regional (FEDER, UE) under Grant No. MAT2016-75354-P for the support. D. A. M. thanks the National Science Foundation of the USA, and the University of Florida Quantum Theory Project and HPC computing facility for their support. Also, T. V. thanks the BARC Supercomputer Center (India), and M.P.D.C. thanks the CESGA supercomputer center for their support in Spain

    Interplay between Epigenetics, Expression of Estrogen Receptor- α, HER2/ERBB2 and Sensitivity of Triple Negative Breast Cancer Cells to Hormonal Therapy

    No full text
    Triple negative breast cancer (TNBC) cells are resistant to hormonal/targeted therapies. This study aims to investigate epigenetic differences between TNBC and other types of breast cancer and the effect of epigenetic modulation on the response of TNBC cells to hormonal therapy. Thus, we investigated (i) the expression of different epigenetic markers, (ii) the effect of epigenetic modifying agents on the expression of ERα and HER2/ERBB2 and (iii) the effect on the response to tamoxifen in four breast cancer cell lines with different hormonal receptor status. Our results revealed a differential expression patterns of epigenetic markers in the four breast cancer cells. In TNBC cells, histone deacetylases (HDAC) 1 and 2 were less expressed, whereas HDACs 4 and 6 were overexpressed. Interestingly, treatment with epigenetic modifiers resulted in (i) a pronounced increase in the expression of ERα and HER2/ERBB2 along with (ii) an increase in the sensitivity of TNBC cells to tamoxifen. Collectively, this study indicates a different epigenetic background for TNBC cells, which represses the expression of ERα and HER2/ERBB2. Furthermore, we provide here the rationale for the use of epigenetic modifiers to enhance the response of TNBC to hormonal therapy through upregulation of ERα

    Development of a position-sensitive fast scintillator (LaBr

    No full text
    We have characterized a Cerium doped Lanthanum Bromide (LaBr3(Ce) ) crystal coupled with the position-sensitive photo-multiplier system for the gamma-ray imaging application. One can use this detector set-up for the scanning of high purity germanium detectors for pulse shape analysis in gamma-ray spectroscopy experiments and the image formation of an object by Compton back-scattering . The sensor has been tested for energy, timing and position information of the gamma-rays interacting within the detector crystal. The GEANT4 simulation results are consistent with the experimental results. We have reconstructed the image of irradiation spots in different positions throughout the detector crystal. Position resolution is found to be around 3.5 mm with the 2 mm collimated gamma-rays. The 2-d image of hexagonal Bismuth Germanate (BGO) crystal and a cylindrical LaBr3(Ce) crystal have been reconstructed in coincidence technique. The performance of the detector for imaging application has been investigated by coincidence technique in GEANT4 simulation and compared with the experimental data. We have reconstructed the 2-d images of objects with various geometrical shapes by Compton back-scattered events of the gamma-rays. This position-sensitive detector can be used as an absorber of a Compton camera for the image reconstruction of an extended radioactive source. One can also use this kind of set-up as in radiation imaging and many other applications where the energy and source position of the gamma-ray is the main interest

    Evaluating the capability of regional-scale air quality models to capture the vertical distribution of pollutants

    Get PDF
    © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 LicenseThis study is conducted in the framework of the Air Quality Modelling Evaluation International Initiative (AQMEII) and aims at the operational evaluation of an ensemble of 12 regional-scale chemical transport models used to predict air quality over the North American (NA) and European (EU) continents for 2006. The modelled concentrations of ozone and CO, along with the meteorological fields of wind speed (WS) and direction (WD), temperature (T), and relative humidity (RH), are compared against high-quality in-flight measurements collected by instrumented commercial aircraft as part of the Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by Airbus In-service airCraft (MOZAIC) programme. The evaluation is carried out for five model domains positioned around four major airports in NA (Portland, Philadelphia, Atlanta, and Dallas) and one in Europe (Frankfurt), from the surface to 8.5 km. We compare mean vertical profiles of modelled and measured variables for all airports to compute error and variability statistics, perform analysis of altitudinal error correlation, and examine the seasonal error distribution for ozone, including an estimation of the bias introduced by the lateral boundary conditions (BCs). The results indicate that model performance is highly dependent on the variable, location, season, and height (e.g. surface, planetary boundary layer (PBL) or free troposphere) being analysed. While model performance for T is satisfactory at all sites (correlation coefficient in excess of 0.90 and fractional bias a parts per thousand currency sign 0.01 K), WS is not replicated as well within the PBL (exhibiting a positive bias in the first 100 m and also underestimating observed variability), while above 1000 m, the model performance improves (correlation coefficient often above 0.9). The WD at NA airports is found to be biased in the PBL, primarily due to an overestimation of westerly winds. RH is modelled well within the PBL, but in the free troposphere large discrepancies among models are observed, especially in EU. CO mixing ratios show the largest range of modelled-to-observed standard deviations of all the examined species at all heights and for all airports. Correlation coefficients for CO are typically below 0.6 for all sites and heights, and large errors are present at all heights, particularly in the first 250 m. Model performance for ozone in the PBL is generally good, with both bias and error within 20%. Profiles of ozone mixing ratios depend strongly on surface processes, revealed by the sharp gradient in the first 2 km (10 to 20 ppb km(-1)). Modelled ozone in winter is biased low at all locations in the NA, primarily due to an underestimation of ozone from the BCs. Most of the model error in the PBL is due to surface processes (emissions, transport, photochemistry), while errors originating aloft appear to have relatively limited impact on model performance at the surface. Suggestions for future work include interpretation of the model-to-model variability and common sources of model bias, and linking CO and ozone bias to the bias in the meteorological fields. Based on the results from this study, we suggest possible in-depth, process-oriented and diagnostic investigations to be carried out next.Peer reviewe
    corecore