305 research outputs found

    Measurement of cerebral oxygen pressure in living mice by two-photon phosphorescence lifetime microscopy

    Full text link
    The ability to quantify partial pressure of oxygen (pO2) is of primary importance for studies of metabolic processes in health and disease. Here, we present a protocol for imaging of oxygen distributions in tissue and vasculature of the cerebral cortex of anesthetized and awake mice. We describe in vivo two-photon phosphorescence lifetime microscopy (2PLM) of oxygen using the probe Oxyphor 2P. This minimally invasive protocol outperforms existing approaches in terms of accuracy, resolution, and imaging depth

    Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state

    Get PDF
    A mixing model derived from first principles describes the bulk density (BD) of intertidal wetland sediments as a function of loss on ignition (LOI). The model assumes that the bulk volume of sediment equates to the sum of self-packing volumes of organic and mineral components or BD = 1/[LOI/k1 + (1-LOI)/k2], where k1 and k2 are the self-packing densities of the pure organic and inorganic components, respectively. The model explained 78% of the variability in total BD when fitted to 5075 measurements drawn from 33 wetlands distributed around the conterminous United States. The values of k1 and k2 were estimated to be 0.085 ± 0.0007 g cm−3 and 1.99 ± 0.028 g cm−3, respectively. Based on the fitted organic density (k1) and constrained by primary production, the model suggests that the maximum steady state accretion arising from the sequestration of refractory organic matter is ≤ 0.3 cm yr−1. Thus, tidal peatlands are unlikely to indefinitely survive a higher rate of sea-level rise in the absence of a significant source of mineral sediment. Application of k2 to a mineral sediment load typical of East and eastern Gulf Coast estuaries gives a vertical accretion rate from inorganic sediment of 0.2 cm yr−1. Total steady state accretion is the sum of the parts and therefore should not be greater than 0.5 cm yr−1 under the assumptions of the model. Accretion rates could deviate from this value depending on variation in plant productivity, root:shoot ratio, suspended sediment concentration, sediment-capture efficiency, and episodic events

    Transcatheter Edge-to-Edge Treatment of Functional Tricuspid Regurgitation in an Ex Vivo Pulsatile Heart Model

    Get PDF
    Although associated with left heart pathologies, functional tricuspid regurgitation (FTR) is often left untreated during left heart surgery. Hence, owing to its degenerative character, reoperation is often needed, encompassing an impressive (25% to 35%) mortality rate. Thus transcatheter approaches to FTR are raising great interest

    Uncertainty in United States coastal wetland greenhouse gas inventorying

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 13 (2018): 115005, doi:10.1088/1748-9326/aae157.Coastal wetlands store carbon dioxide (CO2) and emit CO2 and methane (CH4) making them an important part of greenhouse gas (GHG) inventorying. In the contiguous United States (CONUS), a coastal wetland inventory was recently calculated by combining maps of wetland type and change with soil, biomass, and CH4 flux data from a literature review. We assess uncertainty in this developing carbon monitoring system to quantify confidence in the inventory process itself and to prioritize future research. We provide a value-added analysis by defining types and scales of uncertainty for assumptions, burial and emissions datasets, and wetland maps, simulating 10 000 iterations of a simplified version of the inventory, and performing a sensitivity analysis. Coastal wetlands were likely a source of net-CO2-equivalent (CO2e) emissions from 2006–2011. Although stable estuarine wetlands were likely a CO2e sink, this effect was counteracted by catastrophic soil losses in the Gulf Coast, and CH4 emissions from tidal freshwater wetlands. The direction and magnitude of total CONUS CO2e flux were most sensitive to uncertainty in emissions and burial data, and assumptions about how to calculate the inventory. Critical data uncertainties included CH4 emissions for stable freshwater wetlands and carbon burial rates for all coastal wetlands. Critical assumptions included the average depth of soil affected by erosion events, the method used to convert CH4 fluxes to CO2e, and the fraction of carbon lost to the atmosphere following an erosion event. The inventory was relatively insensitive to mapping uncertainties. Future versions could be improved by collecting additional data, especially the depth affected by loss events, and by better mapping salinity and inundation gradients relevant to key GHG fluxes. Social Media Abstract: US coastal wetlands were a recent and uncertain source of greenhouse gasses because of CH4 and erosion.Financial support was provided primarily by NASA Carbon Monitoring Systems (NNH14AY67I) and the USGS Land Carbon Program, with additional support from The Smithsonian Institution, The Coastal Carbon Research Coordination Network (DEB-1655622), and NOAA Grant: NA16NMF4630103

    Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes

    Get PDF
    Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms

    The tundra phenology database: more than two decades of tundra phenology responses to climate change

    Get PDF
    Observations of changes in phenology have provided some of the strongest signals of the effects of climate change on terrestrial ecosystems. The International Tundra Experiment (ITEX), initiated in the early 1990s, established a common protocol to measure plant phenology in tundra study areas across the globe. Today, this valuable collection of phenology measurements depicts the responses of plants at the colder extremes of our planet to experimental and ambient changes in temperature over the past decades. The database contains 150 434 phenology observations of 278 plant species taken at 28 study areas for periods of 1\u201326 years. Here we describe the full data set to increase the visibility and use of these data in global analyses and to invite phenology data contributions from underrepresented tundra locations. Portions of this tundra phenology database have been used in three recent syntheses, some data sets are expanded, others are from entirely new study areas, and the entirety of these data are now available at the Polar Data Catalogue (https://doi.org/10.21963/13215)

    Herbal supplements in the print media: communicating benefits and risks

    Get PDF
    Background The rise in use of food supplements based on botanical ingredients (herbal supplements) is depicted as part of a trend empowering consumers to manage their day-to-day health needs, which presupposes access to clear and accurate information to make effective choices. Evidence regarding herbal supplement efficacy is extremely variable so recent regulations eliminating unsubstantiated claims about potential effects leave producers able to provide very little information about their products. Medical practitioners are rarely educated about herbal supplements and most users learn about them via word-of-mouth, allowing dangerous misconceptions to thrive, chief among them the assumption that natural products are inherently safe. Print media is prolific among the information channels still able to freely discuss herbal supplements. Method This study thematically analyses how 76 newspaper/magazine articles from the UK, Romania and Italy portray the potential risks and benefits of herbal supplements. Results Most articles referenced both risks and benefits and were factually accurate but often lacked context and impartiality. More telling was how the risks and benefits were framed in service of a chosen narrative, the paucity of authoritative information allowing journalists leeway to recontextualise herbal supplements in ways that serviced the goals and values of their specific publications and readerships. Conclusion Providing sufficient information to empower consumers should not be the responsibility of print media, instead an accessible source of objective information is required.</p

    Neuropsychiatric Symptoms in Patients with Aortic Aneurysms

    Get PDF
    BACKGROUND: Emerging evidence suggests that vascular disease confers vulnerability to a late-onset of depressive illness and the impairment of specific cognitive functions, most notably in the domains of memory storage and retrieval. Lower limb athero-thrombosis and abdominal aortic aneurysm (AAA) have both been previously associated with neuropsychiatric symptoms possibly due to associated intracerebral vascular disease or systemic inflammation, hence suggesting that these illnesses may be regarded as models to investigate the vascular genesis of neuropsychiatric symptoms. The aim of this study was to compare neuropsychiatric symptoms such as depression, anxiety and a variety of cognitive domains in patients who had symptoms of peripheral athero-thrombosis (intermittent claudication) and those who had an asymptomatic abdominal aortic aneurysm AAA. METHODOLOGY/PRINCIPAL FINDINGS: In a cross-sectional study, 26 participants with either intermittent claudication or AAA were assessed using a detailed neuropsychiatric assessment battery for various cognitive domains and depression and anxiety symptoms (Hamilton Depression and Anxiety Scales). Student t test and linear regression analyses were applied to compare neuropsychiatric symptoms between patient groups. AAA participants showed greater levels of cognitive impairment in the domains of immediate and delayed memory as compared to patients who had intermittent claudication. Cognitive dysfunction was best predicted by increasing aortic diameter. CRP was positively related to AAA diameter, but not to cognitive function. AAA and aortic diameter in particular were associated with cognitive dysfunction in this study. CONCLUSIONS/SIGNIFICANCE: AAA patients are at a higher risk for cognitive impairment than intermittent claudication patients. Validation of this finding is required in a larger study, but if confirmed could suggest that systemic factors peculiar to AAA may impact on cognitive function.Bernhard T. Baune, Steven J. Unwin, Frances Quirk and Jonathan Golledg
    corecore