362 research outputs found

    Glacier motion estimation using SAR offset-tracking procedures

    Get PDF
    Two image-to-image patch offset techniques for estimating feature motion between satellite synthetic aperture radar (SAR) images are discussed. Intensity tracking, based on patch intensity cross-correlation optimization, and coherence tracking, based on patch coherence optimization, are used to estimate the movement of glacier surfaces between two SAR images in both slant-range and azimuth direction. The accuracy and application range of the two methods are examined in the case of the surge of Monacobreen in Northern Svalbard between 1992 and 1996. Offset-tracking procedures of SAR images are an alternative to differential SAR interferometry for the estimation of glacier motion when differential SAR interferometry is limited by loss of coherence, i.e., in the case of rapid and incoherent flow and of large acquisition time intervals between the two SAR images. In addition, an offset-tracking procedure in the azimuth direction may be combined with differential SAR interferometry in the slant-range direction in order to retrieve a two-dimensional displacement map when SAR data of only one orbit configuration are available

    Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers

    Get PDF
    The Greenland ice sheet is experiencing increasing rates of mass loss, the majority of which results from changes in discharge from tidewater glaciers. Both atmospheric and ocean drivers have been implicated in these dynamic changes, but understanding the nature of the response has been hampered by the lack of measurements of glacier flow rates predating the recent period of warming. Here, using Landsat-5 data from 1985 onwards, we extend back in time the record of surface velocities and ice-front position for 16 of Greenland's fastest-flowing tidewater glaciers, and compare these to more recent data from Landsat-7 and satellite-borne synthetic-aperture radar. Climate re-analysis data and sea surface temperatures from 1982 show that since 1995 most of Greenland and its surrounding oceans have experienced significant overall warming, and a switch to a warming trend. During the period from 1985 to 1995 when Greenland and the surrounding oceans were not warming, major tidewater outlet glaciers around Greenland, including Kangerdlugssuaq and Helheim, were dynamically stable. Since the mid-1990s, glacier discharge has consistently been both greater and more variable. Together, these observations support the hypothesis that recent dynamic change is a rapid response to climate forcing. Both air and ocean temperatures in this region are predicted to continue to warm, and will therefore likely drive further change in outlet glacier discharge

    Ocean forcing of glacier retreat in the western Antarctic Peninsula

    Get PDF
    In recent decades, hundreds of glaciers draining the Antarctic Peninsula (63° to 70°S) have undergone systematic and progressive change. These changes are widely attributed to rapid increases in regional surface air temperature, but it is now clear that this cannot be the sole driver. Here, we identify a strong correspondence between mid-depth ocean temperatures and glacier-front changes along the ~1000-kilometer western coastline. In the south, glaciers that terminate in warm Circumpolar Deep Water have undergone considerable retreat, whereas those in the far northwest, which terminate in cooler waters, have not. Furthermore, a mid-ocean warming since the 1990s in the south is coincident with widespread acceleration of glacier retreat. We conclude that changes in ocean-induced melting are the primary cause of retreat for glaciers in this region

    Modelling environmental influences on calving at Helheim Glacier in eastern Greenland

    Get PDF
    Calving is an important mass-loss process for many glaciers worldwide, and has been assumed to respond to a variety of environmental influences. We present a grounded, flowline tidewater glacier model using a physically-based calving mechanism, applied to Helheim Glacier, eastern Greenland. By qualitatively examining both modelled size and frequency of calving events, and the subsequent dynamic response, the model is found to realistically reproduce key aspects of observed calving behaviour. Experiments explore four environmental variables which have been suggested to affect calving rates: water depth in crevasses, basal water pressure, undercutting of the calving face by submarine melt and backstress from ice mélange. Of the four variables, only crevasse water depth and basal water pressure were found to have a significant effect on terminus behaviour when applied at a realistic magnitude. These results are in contrast to previous modelling studies, which have suggested that ocean temperatures could strongly influence the calving front. The results raise the possibility that Greenland outlet glaciers could respond to the recent trend of increased surface melt observed in Greenland more strongly than previously thought, as surface ablation can strongly affect water depth in crevasses and water pressure at the glacier bed

    Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard

    Get PDF
    In this paper, we study the effects of basal friction, sub-aqueous undercutting and glacier geometry on the calving process by combining six different models in an offline-coupled workflow: a continuum–mechanical ice flow model (Elmer/Ice), a climatic mass balance model, a simple subglacial hydrology model, a plume model, an undercutting model and a discrete particle model to investigate fracture dynamics (Helsinki Discrete Element Model, HiDEM). We demonstrate the feasibility of reproducing the observed calving retreat at the front of Kronebreen, a tidewater glacier in Svalbard, during a melt season by using the output from the first five models as input to HiDEM. Basal sliding and glacier motion are addressed using Elmer/Ice, while calving is modelled by HiDEM. A hydrology model calculates subglacial drainage paths and indicates two main outlets with different discharges. Depending on the discharge, the plume model computes frontal melt rates, which are iteratively projected to the actual front of the glacier at subglacial discharge locations. This produces undercutting of different sizes, as melt is concentrated close to the surface for high discharge and is more diffuse for low discharge. By testing different configurations, we show that undercutting plays a key role in glacier retreat and is necessary to reproduce observed retreat in the vicinity of the discharge locations during the melting season. Calving rates are also influenced by basal friction, through its effects on near-terminus strain rates and ice velocity

    Frailty exists in younger adults admitted as surgical emergency leading to adverse outcomes

    Get PDF
    Background: Frailty is prevalent in the older adult population (≥65 years of age) and results in adverse outcomes in the emergency general surgical population. Objective: To determine whether frailty exists in the younger adult emergency surgical population (<65 years) and what influence frailty may have on patient related outcomes. Design: Prospective observational cohort study. Setting: Emergency general surgical admissions. Participants: All patients ≥40 years divided into 2 groups: younger adults (40-64.9 years) and older adult comparative group (≥65). Measurements: Over a 6-month time frame the following data was collected: demographics; Scottish Index of Multiple Deprivation (SIMD); blood markers; multi-morbidities, polypharmacy and cognition. Frailty was assessed by completion of the Canadian Study of Health and Ageing (CSHA). Each patient was followed up for 90 days to allow determination of length of stay, re-admission and mortality. Results: 82 young adults were included and the prevalence of frailty was 16% (versus older adults 38%; p=0.001) and associated with: multi-morbidity; poly-pharmacy; cognitive impairment; and deprivation. Frailty in older adults was only significantly associated with increasing age. Conclusions: This novel study has found that frailty exists in 16% of younger adults admitted to emergency general surgical units, potentially leading to adverse short and long-term outcomes. Strategies need to be developed that identify and treat frailty in this vulnerable younger adult population

    The structural and dynamic responses of Stange Ice Shelf to recent environmental change

    Get PDF
    Stange Ice Shelf is the most south-westerly ice shelf on the Antarctic Peninsula, a region where positive trends in atmospheric and oceanic temperatures have been recently documented. In this paper, we use a range of remotely sensed datasets to evaluate the structural and dynamic responses of Stange Ice Shelf to these environmental changes. Ice shelf extent and surface structures were examined at regular intervals from optical and radar satellite imagery between 1973 and 2011. Surface speeds were estimated in 1989, 2004 and 2010 by tracking surface features in successive satellite images. Surface elevation change was estimated using radar altimetry data acquired between 1992 and 2008 by the European Remote Sensing Satellite (ERS) -1, -2 and Envisat. The mean number of surface melt days was estimated using the intensity of backscatter from Envisat’s Advanced Synthetic Aperture Radar instrument between 2006 and 2012. These results show significant shear fracturing in the southern portion of the ice shelf linked to enhanced flow speed as a consequence of measured thinning. However, we conclude that, despite the observed changes, Stange Ice Shelf is currently stable

    Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula

    Get PDF
    A structural glaciological description and analysis of surface morphological features of the Larsen C ice shelf, Antarctic Peninsula, is derived from satellite images spanning the period 1963-2007. The data are evaluated in two time ranges: a comparison of a 1963 satellite image photomosaic with a modern digital mosaic compiled using 2003/04 austral summer data; and an image series since 2003 showing recent evolution of the shelf. We map the ice-shelf edge, rift swarms, crevasses and crevasse traces, and linear longitudinal structures (called 'flow stripes' or 'streak lines'). The latter are observed to be continuous over distances of up to 200km from the grounding line to the ice-shelf edge, with little evidence of changes in pattern over that distance. Integrated velocity measurements along a flowline indicate that the shelf has been stable for similar to 560years in the mid-shelf area. Linear longitudinal features may be grouped into 12 units, each related to one or a small group of outlet feeder glaciers to the shelf. We observe that the boundaries between these flow units often mark rift terminations. The boundary zones originate upstream at capes, islands or other suture areas between outlet glaciers. In agreement with previous work, our findings imply that rift terminations within such suture zones indicate that they contain anomalously soft ice. We thus suggest that suture zones within the Larsen C ice shelf, and perhaps within ice shelves more generally, may act to stabilize them by reducing regional stress intensities and thus rates of rift lengthening

    Creative aspiration and the betrayal of promise? The experience of new creative workers

    Get PDF
    The promise of ‘doing what you love’ continues to attract new aspirants to creative work, yet most creative industries are so characterised by low investment, shifting foci and ongoing technological innovation that all promises must be unreliable. Some would-be creative workers negotiate their own pathways from the outset, ‘following their dream’ as they attempt to convert personal enthusiasms and amateur activities into income-earning careers. Others look to the proliferation of available training and education options, including higher education courses, as possible pathways into creative work. This chapter reviews recent research from the USA, Australia and the UK on the effectiveness – or otherwise – of higher education as preparation for a creative career. The chapter discusses the obstacles that many creative workers, including graduates, encounter on their creative pathways, for instance, as a result of informal work practices and self-employment. The chapter also looks at sources of advantage and disadvantage, such as those associated with particular geographic locations or personal identities. The chapter concludes by introducing the subsequent chapters in the collection. These critically explore the experience of new creative workers in a wide range of national contexts including Australia, Belgium, China, Ireland, Italy, Finland, the Netherlands, Russia and the United Kingdom

    Physical conditions of fast glacier flow:3. Seasonally-evolving ice deformation on Store Glacier, West Greenland

    Get PDF
    Temporal variations in ice sheet flow directly impact the internal structure within ice sheets through englacial deformation. Large‐scale changes in the vertical stratigraphy within ice sheets have been previously conducted on centennial to millennial timescales; however, intra‐annual changes in the morphology of internal layers have yet to be explored. Over a period of 2 years, we use autonomous phase‐sensitive radio‐echo sounding to track the daily displacement of internal layers on Store Glacier, West Greenland, to millimeter accuracy. At a site located ∼30 km from the calving terminus, where the ice is ∼600 m thick and flows at ∼700 m/a, we measure distinct seasonal variations in vertical velocities and vertical strain rates over a 2‐year period. Prior to the melt season (March–June), we observe increasingly nonlinear englacial deformation with negative vertical strain rates (i.e., strain thinning) in the upper half of the ice column of approximately −0.03 a⁻¹, whereas the ice below thickens under vertical strain reaching up to +0.16 a⁻¹. Early in the melt season (June–July), vertical thinning gradually ceases as the glacier increasingly thickens. During late summer to midwinter (August–February), vertical thickening occurs linearly throughout the entire ice column, with strain rates averaging 0.016 a⁻¹. We show that these complex variations are unrelated to topographic setting and localized basal slip and hypothesize that this seasonality is driven by far‐field perturbations in the glacier's force balance, in this case generated by variations in basal hydrology near the glacier's terminus and propagated tens of kilometers upstream through transient basal lubrication longitudinal coupling
    corecore