56 research outputs found

    A qualitative impairment in face perception in Alzheimer’s disease : evidence from a reduced face inversion effect

    Get PDF
    Prevalent face recognition difficulties in Alzheimer’s disease (AD) have typically been attributed to the underlying episodic and semantic memory impairment. The aim of the current study was to determine if AD patients are also impaired at the perceptual level for faces, more specifically at extracting a visual representation of an individual face. To address this question, we investigated the matching of simultaneously presented individual faces and of other nonface familiar shapes (cars), at both upright and inverted orientation, in a group of mild AD patients and in a group of healthy older controls matched for age and education. AD patients showed a reduced inversion effect (i.e., larger performance for upright than inverted stimuli) for faces, but not for cars, both in terms of error rates and response times. While healthy participants showed a much larger decrease in performance for faces than for cars with inversion, the inversion effect did not differ significantly for faces and cars in AD. This abnormal inversion effect for faces was observed in a large subset of individual patients with AD. These results suggest that AD patients have deficits in higher-level visual processes, more specifically at perceiving individual faces, a function that relies on holistic representations specific to upright face stimuli. These deficits, combined with their memory impairment, may contribute to the difficulties in recognizing familiar people that are often reported in patients suffering from the disease and by their caregivers

    The Man Who Mistook His Neuropsychologist For a Popstar: When Configural Processing Fails in Acquired Prosopagnosia

    Get PDF
    We report the case of an individual with acquired prosopagnosia who experiences extreme difficulties in recognising familiar faces in everyday life despite excellent object recognition skills. Formal testing indicates that he is also severely impaired at remembering pre-experimentally unfamiliar faces and that he takes an extremely long time to identify famous faces and to match unfamiliar faces. Nevertheless, he performs as accurately and quickly as controls at identifying inverted familiar and unfamiliar faces and can recognise famous faces from their external features. He also performs as accurately as controls at recognising famous faces when fracturing conceals the configural information in the face. He shows evidence of impaired global processing but normal local processing of Navon figures. This case appears to reflect the clearest example yet of an acquired prosopagnosic patient whose familiar face recognition deficit is caused by a severe configural processing deficit in the absence of any problems in featural processing. These preserved featural skills together with apparently intact visual imagery for faces allow him to identify a surprisingly large number of famous faces when unlimited time is available. The theoretical implications of this pattern of performance for understanding the nature of acquired prosopagnosia are discussed

    The Glasgow Voice Memory Test: Assessing the ability to memorize and recognize unfamiliar voices

    Get PDF
    One thousand one hundred and twenty subjects as well as a developmental phonagnosic subject (KH) along with age-matched controls performed the Glasgow Voice Memory Test, which assesses the ability to encode and immediately recognize, through an old/new judgment, both unfamiliar voices (delivered as vowels, making language requirements minimal) and bell sounds. The inclusion of non-vocal stimuli allows the detection of significant dissociations between the two categories (vocal vs. non-vocal stimuli). The distributions of accuracy and sensitivity scores (d’) reflected a wide range of individual differences in voice recognition performance in the population. As expected, KH showed a dissociation between the recognition of voices and bell sounds, her performance being significantly poorer than matched controls for voices but not for bells. By providing normative data of a large sample and by testing a developmental phonagnosic subject, we demonstrated that the Glasgow Voice Memory Test, available online and accessible fromall over the world, can be a valid screening tool (~5 min) for a preliminary detection of potential cases of phonagnosia and of “super recognizers” for voices

    Onset of the aerobic nitrogen cycle during the Great Oxidation Event

    Get PDF
    The rise of oxygen on the early Earth (about 2.4 billion years ago)1 caused a reorganization of marine nutrient cycles2, 3, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records4 lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope (15N/14N) values from approximately 2.31-billion-year-old shales5 of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event)6. Our data fill a gap of about 400 million years in the temporal 15N/14N record4 and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton

    Mineralogical and geochemical analysis of Fe-phases in drill-cores from the Triassic Stuttgart Formation at Ketzin CO₂ storage site before CO₂ arrival

    Get PDF
    Reactive iron (Fe) oxides and sheet silicate-bound Fe in reservoir rocks may affect the subsurface storage of CO2 through several processes by changing the capacity to buffer the acidification by CO2 and the permeability of the reservoir rock: (1) the reduction of three-valent Fe in anoxic environments can lead to an increase in pH, (2) under sulphidic conditions, Fe may drive sulphur cycling and lead to the formation of pyrite, and (3) the leaching of Fe from sheet silicates may affect silicate diagenesis. In order to evaluate the importance of Fe-reduction on the CO2 reservoir, we analysed the Fe geochemistry in drill-cores from the Triassic Stuttgart Formation (Schilfsandstein) recovered from the monitoring well at the CO2 test injection site near Ketzin, Germany. The reservoir rock is a porous, poorly to moderately cohesive fluvial sandstone containing up to 2–4 wt% reactive Fe. Based on a sequential extraction, most Fe falls into the dithionite-extractable Fe-fraction and Fe bound to sheet silicates, whereby some Fe in the dithionite-extractable Fe-fraction may have been leached from illite and smectite. Illite and smectite were detected in core samples by X-ray diffraction and confirmed as the main Fe-containing mineral phases by X-ray absorption spectroscopy. Chlorite is also present, but likely does not contribute much to the high amount of Fe in the silicate-bound fraction. The organic carbon content of the reservoir rock is extremely low (<0.3 wt%), thus likely limiting microbial Fe-reduction or sulphate reduction despite relatively high concentrations of reactive Fe-mineral phases in the reservoir rock and sulphate in the reservoir fluid. Both processes could, however, be fuelled by organic matter that is mobilized by the flow of supercritical CO2 or introduced with the drilling fluid. Over long time periods, a potential way of liberating additional reactive Fe could occur through weathering of silicates due to acidification by CO2

    First Investigation of the Microbiology of the Deepest Layer of Ocean Crust

    Get PDF
    We would like to thank Frederick (Rick) Colwell for input on molecular analyses in low biomass environments, Donna Blackman, Benoît Ildefonse, Adélie Delacour, and Gretchen Früh-Green for discussions regarding geological and geochemical aspects of this manuscript, and the Integrated Ocean Drilling Program Expeditions 304/305 Science Party. We would also like to thank Captain Alex Simpson and the entire crew of the JOIDES Resolution.Conceived and designed the experiments: OUM MRF SJG. Performed the experiments: OUM TN MR JDVN AM. Analyzed the data: OUM TN MR JDVN AM. Contributed reagents/materials/analysis tools: TN MR JZ MRF SJG. Wrote the paper: OUM.The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 °N, 42 °W). Microbial diversity in the rocks was analyzed by denaturing gradient gel electrophoresis and sequencing (Expedition 304), and terminal restriction fragment length polymorphism, cloning and sequencing, and functional gene microarray analysis (Expedition 305). The gabbroic microbial community was relatively depauperate, consisting of a low diversity of proteobacterial lineages closely related to Bacteria from hydrocarbon-dominated environments and to known hydrocarbon degraders, and there was little evidence of Archaea. Functional gene diversity in the gabbroic samples was analyzed with a microarray for metabolic genes (“GeoChip”), producing further evidence of genomic potential for hydrocarbon degradation - genes for aerobic methane and toluene oxidation. Genes coding for anaerobic respirations, such as nitrate reduction, sulfate reduction, and metal reduction, as well as genes for carbon fixation, nitrogen fixation, and ammonium-oxidation, were also present. Our results suggest that the gabbroic layer hosts a microbial community that can degrade hydrocarbons and fix carbon and nitrogen, and has the potential to employ a diversity of non-oxygen electron acceptors. This rare glimpse of the gabbroic ecosystem provides further support for the recent finding of hydrocarbons in deep ocean gabbro from Hole 1309D. It has been hypothesized that these hydrocarbons might originate abiotically from serpentinization reactions that are occurring deep in the Earth's crust, raising the possibility that the lithic microbial community reported here might utilize carbon sources produced independently of the surface biosphere.Yeshttp://www.plosone.org/static/editorial#pee

    Complementary neural representations for faces and words: A computational exploration

    Full text link

    Gaze-contingent techniques reveal impairment of holistic face processing in acquired prosopagnosia

    No full text
    corecore