847 research outputs found
Active-distributed temperature sensing to continuously quantify vertical flow in boreholes
We show how a distributed borehole flowmeter can be created from armored Fiber Optic cables with the Active-Distributed Temperature Sensing (A-DTS) method. The principle is that in a flowing fluid, the difference in temperature between a heated and unheated cable is a function of the fluid velocity. We outline the physical basis of the methodology and report on the deployment of a prototype A-DTS flowmeter in a fractured rock aquifer. With this design, an increase in flow velocity from 0.01 to 0.3 m s−1 elicited a 2.5°C cooling effect. It is envisaged that with further development this method will have applications where point measurements of borehole vertical flow do not fully capture combined spatiotemporal dynamics
Хирургические методы лечения эхинококкоза печени
Curs Chirurgie, Facultatea stomatologie, USMF ”Nicolae Testemiţanu“The literature review presents an analysis of traditional methods of surgical treatment for liver hydatid cyst (ideal cystectomy, partial and full
perichistectomy, typical and atypical liver resection) and laparoscopic methods (PAIR, resection of liver, partial and full perichistectomy, ideal
cystectomy). For each of these methods the advantages and disadvantages are described as well as where their use is welcome and would decrease
the rate of the postoperative complications. Laparoscopic surgical techniques used in the treatment of liver hydatid cyst has a high efficacy, but
are relatively new, and needs a thorough study of theoretical and practical skills to use them.В обзоре литературы представлен анализ традиционных методов хирургического лечения эхинококкоза печени (идеальная
кистэктомия, частичная и полная перикистэктомия, типичная и атипичная резекция печени) и лапароскопических методов (PAIR,
резекция печени, идеальная кистэктомия, частичная и полная перикистэктомия). В работе отражены преимущества и недостатки
различных методов хирургического лечения эхинококкоза печени, а также послеоперационные осложнения. Лапароскопические
хирургические методы, используемые при лечении эхинококкоза печени, имеют высокую эффективность, но, являясь относительно
новыми методами, требуют тщательного изучения теоретических и практических навыков их использования
Self-degradable Cementitious Sealing Materials
A self-degradable alkali-activated cementitious material consisting of a sodium silicate activator, slag, Class C fly ash, and sodium carboxymethyl cellulose (CMC) additive was formulated as one dry mix component, and we evaluated its potential in laboratory for use as a temporary sealing material for Enhanced Geothermal System (EGS) wells. The self-degradation of alkali-activated cementitious material (AACM) occurred, when AACM heated at temperatures of {ge}200 C came in contact with water. We interpreted the mechanism of this water-initiated self-degradation as resulting from the in-situ exothermic reactions between the reactants yielded from the dissolution of the non-reacted or partially reacted sodium silicate activator and the thermal degradation of the CMC. The magnitude of self-degradation depended on the CMC content; its effective content in promoting degradation was {ge}0.7%. In contrast, no self-degradation was observed from CMC-modified Class G well cement. For 200 C-autoclaved AACMs without CMC, followed by heating at temperatures up to 300 C, they had a compressive strength ranging from 5982 to 4945 psi, which is {approx}3.5-fold higher than that of the commercial Class G well cement; the initial- and final-setting times of this AACM slurry at 85 C were {approx}60 and {approx}90 min. Two well-formed crystalline hydration phases, 1.1 nm tobermorite and calcium silicate hydrate (I), were responsible for developing this excellent high compressive strength. Although CMC is an attractive, as a degradation-promoting additive, its addition to both the AACM and the Class G well cement altered some properties of original cementitious materials; among those were an extending their setting times, an increasing their porosity, and lowering their compressive strength. Nevertheless, a 0.7% CMC-modified AACM as self-degradable cementitious material displayed the following properties before its breakdown by water; {approx}120 min initial- and {approx}180 min final-setting times at 85 C, and 1825 to 1375 psi compressive strength with 51.2 to 55.0% porosity up to 300 C
Characterizing groundwater flow and heat transport in fractured rock using Fiber-Optic Distributed Temperature Sensing
International audienceWe show how fully distributed space-time measurements with Fiber-Optic Distributed Temperature Sensing (FO-DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber-optic cables installed in boreholes. Thermal dilution tests are shown to enable detection of cross-flowing fractures and quantification of the cross flow rate. A cross borehole thermal tracer test is then analyzed to identify fracture zones that are in hydraulic connection between boreholes and to estimate spatially distributed temperature breakthrough in each fracture zone. This provides a significant improvement compared to classical tracer tests, for which concentration data are usually integrated over the whole abstraction borehole. However, despite providing some complementary results, we find that the main contributive fracture for heat transport is different to that for a solute tracer
Thermal-Plume fibre Optic Tracking (T-POT) test for flow velocity measurement in groundwater boreholes
International audienceWe develop an approach for measuring in-well fluid velocities using point electrical heating combined with spatially and temporally continuous temperature monitoring using Distributed Temperature Sensing (DTS). The method uses a point heater to warm a discrete volume of water. The rate of advection of this plume, once the heating is stopped, equates to the average flow velocity in the well. We conducted Thermal-Plume fibre Optic Tracking (T-POT) tests in a borehole in a fractured rock aquifer with the heater at the same depth and multiple pumping rates. Tracking of the thermal plume peak allowed the spatially varying velocity to be estimated up to 50 m downstream from the heating point, depending on the pumping rate. The T-POT technique can be used to estimate the velocity throughout long intervals provided that thermal dilution due to inflows, dispersion, or cooling by conduction do not render the thermal pulse unresolvable with DTS. A complete flow log may be obtained by deploying the heater at multiple depths, or with multiple point heaters
Coherent instabilities in a semiconductor laser with fast gain recovery
We report the observation of a coherent multimode instability in quantum
cascade lasers (QCLs), which is driven by the same fundamental mechanism of
Rabi oscillations as the elusive Risken-Nummedal-Graham-Haken (RNGH)
instability predicted 40 years ago for ring lasers. The threshold of the
observed instability is significantly lower than in the original RNGH
instability, which we attribute to saturable-absorption nonlinearity in the
laser. Coherent effects, which cannot be reproduced by standard laser rate
equations, can play therefore a key role in the multimode dynamics of QCLs, and
in lasers with fast gain recovery in general.Comment: 5 pages, 4 figure
Approche méthodologique de la modélisation du transport des HAP dans les sols et les eaux
Afin de préciser le cadre d'utilisation de codes de transport de polluants dans les sols et les eaux, un programme d'intercomparaison de méthodes et de codes a été mis en oeuvre avec la collaboration de huit équipes appartenant à des instituts de recherche ou des bureaux d'études. Parmi les types de polluants étudiés, les hydrocarbures aromatiques polycycliques (HAP) ont fait l'objet de simulations par deux groupes de travail. Le premier groupe, composé de cinq équipes, s'est intéressé à leur comportement en phase dissoute à partir d'un cas réel de pollution. Disposant des mêmes données d'étude, chaque équipe avait pour mission de concevoir un modèle conceptuel (description géologique, définition de la source, paramètres d'écoulement et de transport) et de simuler la pollution de la nappe avec le code de son choix. Les résultats obtenus montrent des différences significatives qui trouvent leur explication dans les paramètres des modèles conceptuels adoptés plus que dans les simulateurs choisis. Cet exercice a confirmé l'importance des paramètres suivants qui sont souvent incertains mais justifieraient d'être mieux appréciés lors de diagnostics : paramètres hydrodynamiques (détermination du champ de vitesse), coefficient de partition (pour chaque horizon géologique), temps de demi-vie du ou des polluants, extension de la source de pollution. Le second groupe a étudié les écoulements en phase libre (phase liquide non aqueuse) sur un cas théorique inspiré d'un cas réel de déversement massif de naphtalène. La modélisation a été conduite par trois équipes avec trois codes polyphasiques différents (SIMUSCOPP, TOUGH/T2VOC, UTCHEM). Cet exercice comprend le suivi du déversement et de la migration du naphtalène sous formes liquide et dissoute sur une distance de 300 m et une durée de 10 ans. Le naphtalène révèle un comportement d'hydrocarbure " lourd " avec une phase huile (partiellement miscible) qui tend à descendre à travers la nappe. Ce comportement a été reproduit par chacune des équipes, de manière plus ou moins complète en fonction des possibilités de modélisation offertes par les codes. Les résultats obtenus permettent de vérifier la cohérence des différentes approches polyphasiques entre elles. Bien que plus complexe (paramètres plus nombreux, difficulté numérique accrue), l'approche polyphasique se justifie pour mieux comprendre et déterminer la répartition spatiale de HAP en profondeur dans une nappe
Improving the sensitivity of future GW observatories in the 1-10 Hz band: Newtonian and seismic noise
The next generation gravitational wave interferometric detectors will likely be underground detectors to extend the GW detection frequency band to frequencies below the Newtonian noise limit. Newtonian noise originates from the continuous motion of the Earth’s crust driven by human activity, tidal stresses and seismic motion, and from mass density fluctuations in the atmosphere. It is calculated that on Earth’s surface, on a typical day, it will exceed the expected GW signals at frequencies below 10 Hz. The noise will decrease underground by an unknown amount. It is
important to investigate and to quantify this expected reduction and its effect on the sensitivity of future detectors, to plan for further improvement strategies. We report about some of these aspects. Analytical models can be used in the simplest scenarios to get a better qualitative and semi-quantitative understanding. As more complete modeling can be done numerically, we will discuss also some results obtained with a finite-element-based modeling tool. The method is verified by comparing its results with the results of analytic calculations for surface detectors. A key point about noise models is their initial parameters and conditions, which require detailed information about seismic motion in a real scenario. We will describe an effort to characterize the seismic activity at the Homestake mine which is currently in progress. This activity is specifically aimed to provide informations and to explore the site as a possible candidate for an underground observatory. Although the only compelling reason to put the interferometer underground is to reduce the Newtonian noise, we expect that the more stable underground environment will have a more general positive impact on the sensitivity.We will end this report with some considerations about seismic and suspension noise
Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway
The past decade has seen a significant increase in the number of potentially tolerogenic therapies for treatment of new-onset diabetes. However, most treatments are antigen nonspecific, and the mechanism for the maintenance of long-term tolerance remains unclear. In this study, we developed an antigen-specific therapy, insulin-coupled antigen-presenting cells, to treat diabetes in nonobese diabetic mice after disease onset. Using this approach, we demonstrate disease remission, inhibition of pathogenic T cell proliferation, decreased cytokine production, and induction of anergy. Moreover, we show that robust long-term tolerance depends on the programmed death 1 (PD-1)–programmed death ligand (PD-L)1 pathway, not the distinct cytotoxic T lymphocyte–associated antigen 4 pathway. Anti–PD-1 and anti–PD-L1, but not anti–PD-L2, reversed tolerance weeks after tolerogenic therapy by promoting antigen-specific T cell proliferation and inflammatory cytokine production directly in infiltrated tissues. PD-1–PD-L1 blockade did not limit T regulatory cell activity, suggesting direct effects on pathogenic T cells. Finally, we describe a critical role for PD-1–PD-L1 in another powerful immunotherapy model using anti-CD3, suggesting that PD-1–PD-L1 interactions form part of a common pathway to selectively maintain tolerance within the target tissues
Applications of the PowerGlove
The hand is important in many daily life activities. During aging, quality of fine motor control of hand and fingers is decreasing. Also motor symptoms of the hand are important to define for instance the neurological state of a Parkinson’s disease patient. Although objective and reliable measurement of hand and finger dynamics is of interest, current measurement systems are limited. This paper describes the application of the PowerGlove, a new measurement system based on miniature inertial and magnetic sensors, to study the finger interdependency in healthy elderly and objectively quantify hand motor symptoms in Parkinson’s disease. Results of pilot experiments in young healthy subjects are shown to evaluate the feasibility of the applications
- …