3,492 research outputs found
Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC
Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised
Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System
Gas Electron Multiplier (GEM) technology is being considered for the forward
muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first
implementation is planned for the GE1/1 system in the region of the muon endcap mainly to control muon level-1 trigger rates
after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by
3,072 radial strips with 455 rad pitch arranged in eight -sectors.
We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and
tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO 70:30 and
the RD51 scalable readout system. Four small GEM detectors with 2-D readout and
an average measured azimuthal resolution of 36 rad provided precise
reference tracks. Construction of this largest GEM detector built to-date is
described. Strip cluster parameters, detection efficiency, and spatial
resolution are studied with position and high voltage scans. The plateau
detection efficiency is [97.1 0.2 (stat)]\%. The azimuthal resolution is
found to be [123.5 1.6 (stat)] rad when operating in the center of
the efficiency plateau and using full pulse height information. The resolution
can be slightly improved by 10 rad when correcting for the bias due
to discrete readout strips. The CMS upgrade design calls for readout
electronics with binary hit output. When strip clusters are formed
correspondingly without charge-weighting and with fixed hit thresholds, a
position resolution of [136.8 2.5 stat] rad is measured, consistent
with the expected resolution of strip-pitch/ = 131.3 rad. Other
-sectors of the detector show similar response and performance.Comment: 8 pages, 32 figures, submitted to Proc. 2014 IEEE Nucl. Sci.
Symposium, Seattle, WA, reference adde
Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification
Pancreatic cancer is one of the most lethal of all cancers. The median survival is 6 months, and less than 5% of those diagnosed survive 5-years. Recurrent genetic deletions and amplifications in 73 pancreatic adenocarcinomas, the largest sample set analyzed to date for pancreatic cancer, were defined using comparative genomic hybridization The recurrent genetic alterations identified target a number of previously well-characterized genes, as well as regions that contain possible new oncogenes and tumor suppressor genes. We have focused on chromosome 19q13, a region frequently found amplified in pancreatic cancer, and demonstrate how boundaries of common regions of mutation can be mapped, and how a gene, in this case PAK4 amplified on chromosome19q13, can be functionally validated. We show that although the PAK4 gene is not activated by mutation in cell lines with gene amplification, an oncogenic form of the KRAS2 gene is present in these cells, and oncogenic KRAS2 can activate PAK4. In fact in the three samples we identified with PAK4 gene amplification, the KRAS2 gene was activated and genomically amplified. The kinase activity of the PAK4 protein is significantly higher in cells with genomic amplification as compared to cells without amplification. Our study demonstrates the utility of analyzing copy number data in a large set of neoplasms to identify genes involved in cancer. We have generated a useful dataset which will be particularly useful for the pancreatic cancer community as efforts are undertaken to sequence the pancreatic cancer genome
Tumor Heterogeneity of Fibroblast Growth Factor Receptor 3 (FGFR3) Mutations in Invasive Bladder Cancer: Implications for Peri-Operative anti-FGFR3 Treatment
Background: Fibroblast growth factor receptor 3 (FGFR3) is an actionable target in bladder cancer. Preclinical studies show that anti-FGFR3 treatment slows down tumor growth, suggesting that this tyrosine kinase receptor is a candidate for personalized bladder cancer treatment, particularly in patients with mutated FGFR3. We addressed tumor heterogeneity in a large multicenter, multi-laboratory study, as this may have significant impact on therapeutic response. Patients: and methods We evaluated possible FGFR3 heterogeneity by the PCR-SNaPshot method in the superficial and deep compartments of tumors obtained by transurethral resection (TUR, n = 61) and in radical cystectomy (RC, n = 614) specimens and corresponding cancer-positive lymph nodes (LN+, n = 201).Results: We found FGFR3 mutations in 13/34 (38%) T1 and 8/27 (30%) ≥T2-TUR samples, with 100% concordance between superficial and deeper parts in T1-TUR samples. Of eight FGFR3 mutant ≥T2-TUR samples, only 4 (50%) displayed the mutation in the deeper part. We found 67/614 (11%) FGFR3 mutations in RC specimens. FGFR3 mutation was associated with pN0 (P < 0.001) at RC. In 10/201 (5%) LN+, an FGFR3 mutation was found, all concordant with the corresponding RC specimen. In the remaining 191 cases, RC and LN+ were both wild type.Conclusions: FGFR3 mutation status seems promising to guide decision-making on adjuvant anti-FGFR3 therapy as it appeared homogeneous in RC and LN+. Based on the results of TUR, the deep part of the tumor needs to be assessed if neoadjuvant anti-FGFR3 treatment is considered. We conclude that studies on the heterogeneity of actionable molecular targets should precede clinical trials with these drugs in the perioperative setting
Smart Energy Management System for Minimizing Electricity Cost and Peak to Average Ratio in Residential Areas with Hybrid Genetic Flower Pollination Algorithm
Demand Side Management (DSM) plays a significant role in the smart grid to minimize Electricity Cost (EC). Home Energy Management Systems (HEMSs) have recently been studied and proposed explicitly for HEM. In this paper, we propose a novel nature-inspired hybrid Genetic Flower Pollination Algorithm (GFPA) to minimize cost with an affordable delay in appliance scheduling. Our proposed GFPA algorithm combines elements of the Genetic Algorithm (GA) and Flower Pollination Algorithm (FPA) to create a hybrid approach. To assess the effectiveness of the proposed algorithm, we consider a scalable town consisting of 1, 10, 30, and 50 homes, respectively. The proposed solution finds an optimal scheduling pattern that simultaneously minimizes EC and Peak to Average Ratio (PAR) while maximizing User Comfort (UC). We assume that all homes are homogeneous regarding appliances and power consumption patterns. Simulation results show that our proposed scheme GFPA performs better when applying Critical Peak Pricing (CPP) signal using different Operational Time Intervals (OTIs) and compared with unscheduled, GA, and FPA-based solutions in terms of reducing cost since they achieve on average 98%, 36%, 23%, and 22%, respectively. Similarly, PAR averages 98%, 36%, 59%, and 55%, respectively. While, UC comparing to GA and FPA, are around 88%, 48%, and 63%, respectively. Our proposed scheme achieves better results by applying Real Time Pricing (RTP) signals and different OTIs. As these schemes, i.e., unscheduled, GA, FPA, and GFPA, achieve cost on average 92%, 50%, 29%, and 28%, respectively. While PAR on average 94%, 39%, 62%, and 56%, and UC for GA, FPA, and GFPA on average 98%, 52%, and 49%, respectively. Overall, ourproposed GFPA algorithm offers a more effective solution for minimizing EC with an affordable delay in appliance scheduling while considering PAR and UC
Whole Slide Imaging Versus Microscopy for Primary Diagnosis in Surgical Pathology: A Multicenter Blinded Randomized Noninferiority Study of 1992 Cases (Pivotal Study)
Most prior studies of primary diagnosis in surgical pathology using whole slide imaging (WSI) versus microscopy have focused on specific organ systems or included relatively few cases. The objective of this study was to demonstrate that WSI is noninferior to microscopy for primary diagnosis in surgical pathology. A blinded randomized noninferiority study was conducted across the entire range of surgical pathology cases (biopsies and resections, including hematoxylin and eosin, immunohistochemistry, and special stains) from 4 institutions using the original sign-out diagnosis (baseline diagnosis) as the reference standard. Cases were scanned, converted to WSI and randomized. Sixteen pathologists interpreted cases by microscopy or WSI, followed by a wash-out period of ≥4 weeks, after which cases were read by the same observers using the other modality. Major discordances were identified by an adjudication panel, and the differences between major discordance rates for both microscopy (against the reference standard) and WSI (against the reference standard) were calculated. A total of 1992 cases were included, resulting in 15,925 reads. The major discordance rate with the reference standard diagnosis was 4.9% for WSI and 4.6% for microscopy. The difference between major discordance rates for microscopy and WSI was 0.4% (95% confidence interval, -0.30% to 1.01%). The difference in major discordance rates for WSI and microscopy was highest in endocrine pathology (1.8%), neoplastic kidney pathology (1.5%), urinary bladder pathology (1.3%), and gynecologic pathology (1.2%). Detailed analysis of these cases revealed no instances where interpretation by WSI was consistently inaccurate compared with microscopy for multiple observers. We conclude that WSI is noninferior to microscopy for primary diagnosis in surgical pathology, including biopsies and resections stained with hematoxylin and eosin, immunohistochemistry and special stains. This conclusion is valid across a wide variety of organ systems and specimen types
Efficacy assessment of diatomaceous earth against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) on gram at different temperature and relative humidity regimes
The efficacy of diatomaceous earth against Callosobruchus maculatus (Coleoptera: Bruchidae) was evaluated on stored gram under laboratory conditions. The bioassay was conducted at 25 and 30°C in combination with 50 and 60% r.h. Diatomaceous earth (DE) formulation (Diafil 610), at the dose rates of 200, 400, 600 and 800 ppm was admixed with gram grains. Fifty unsexed adults of C. maculatus were released in each jar and treatments replicated thrice. Mortality data was recorded after 2, 3 and 5 days of exposure intervals and after every count the dead individuals were removed, and the commodity was maintained for an additional period of 25 d, in order to record the emergence of F1 adults. The results showed that all treatments were highly effective against the bruchids; however, the highest mortality (100%) was observed at 30°C and 50% relative humidity at 800 ppm of DE with minimal progeny production.Keywords: Diatomaceous earth, Callosobruchus maculatus, Temperature, relative humidity, Gra
Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry
Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age2, sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort sample size. The meta-analysis yielded a statistically significant GRS × physical activity interaction effect estimate (Pinteraction = 0.015). However, a statistically significant interaction effect was only apparent in North American cohorts (n = 39,810, Pinteraction = 0.014 vs. n = 71,611, Pinteraction = 0.275 for Europeans). In secondary analyses, both the FTO rs1121980 (Pinteraction = 0.003) and the SEC16B rs10913469 (Pinteraction = 0.025) variants showed evidence of SNP × physical activity interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating that these results are either population-specific or non-causal
The impact of ENSO on Southern African rainfall in CMIP5 ocean atmosphere coupled climate models
We study the ability of 24 ocean atmosphere global coupled models from the Coupled Model Intercomparison Project 5 (CMIP5) to reproduce the teleconnections between El Niño Southern Oscillation (ENSO) and Southern African rainfall in austral summer using historical forced simulations, with a focus on the atmospheric dynamic associated with El Niño. Overestimations of summer rainfall occur over Southern Africa in all CMIP5 models. Abnormal westward extensions of ENSO patterns are a common feature of all CMIP5 models, while the warming of the Indian Ocean that happens during El Niño is not correctly reproduced. This could impact the teleconnection between ENSO and Southern African rainfall which is represented with mixed success in CMIP5 models. Large-scale anomalies of suppressed deep-convection over the tropical maritime continent and enhanced convection from the central to eastern Pacific are correctly simulated. However, regional biases occur above Africa and the Indian Ocean, particularly in the position of the deep convection anomalies associated with El Niño, which can lead to the wrong sign in rainfall anomalies in the northwest part of South Africa. From the near-surface to mid-troposphere, CMIP5 models underestimate the observed anomalous pattern of pressure occurring over Southern Africa that leads to dry conditions during El Niño years
Recommended from our members
Climate change and agricultural adaptation in Sri Lanka: a review
Climate change is inevitable and will continue into the next century. Since the agricultural sector in Sri Lanka is one of the most vulnerable to climate change, a thorough understanding of climate transition is critical for formulating effective adaptation strategies. This paper provides an overview of the status of climate change and adaptation in the agricultural sector in Sri Lanka. The review clearly indicates that climate change is taking place in Sri Lanka in terms of rainfall variability and an increase in climate extremes and warming. A number of planned and reactive adaptation responses stemming from policy and farm-level decisions are reported. These adaptation efforts were fragmented and lacked a coherent connection to the national development policies and strategies. Research efforts are needed to develop and identify adaptation approaches and practices that are feasible for smallholder farmers, particularly in the dry zone where paddy and other food crops are predominately cultivated. To achieve the envisaged growth in the agricultural sector, rigorous efforts are necessary to mainstream climate change adaptation into national development policies and ensure that they are implemented at national, regional and local levels
- …
