207 research outputs found

    Biosynthesis and expression of zona pellucida glycoproteins in mammals

    Get PDF
    The zona pellucida (ZP) is an extracellular matrix surrounding the oocyte and the early embryo that exerts several important functions during fertilization and early embryonic development. The ZP of most mammalian species is composed of three glycoproteins (ZPA, ZPB, ZPC), products of the gene families ZPA, ZPB and ZPC that have been found to be highly homologous within mammalian species. Most data on the structure and function of the ZP are obtained from studies in mouse. New data from pig and other domestic animals, however, indicate that the mouse model does not hold for all other species. Whereas in the mouse ZPB is the primary sperm receptor, in the pig ZPA has been shown to possess receptor activity. Contrary to the mouse, where the growing oocyte is the only source of zona glycoproteins, in domestic animals these proteins are expressed in both the oocyte and granulosa cells in a stage-specific pattern and may play also a role in granulosa cell differentiation. In several mammalian species, the epithelial secretory cells of the oviduct synthesize and secrete specific glycoproteins (oviductins) that become closely associated with the ZP of the ovulated oocyte. Once bound to the ZP, oviductin molecules could act as a protective layer around the oocyte and early embryo by virtue of their densely glycosylated mucin-type domains. Copyright (C) 2001 S. Karger AG, Basel

    The complete primary structure of the spermadhesin AWN, a zona pellucida-binding protein isolated from boar spermatozoa

    Get PDF
    AbstractAWN is a boar protein which originates in secretions of the male accessory glands and which becomes sperm surface-associated upon ejaculation. It is one of the components thought to mediate sperm adhesion to the egg's zona pellucida through a carbohydrate-recognition mechanism. AWN may, thus, participate in the initial events of fertilization in the pig. In this report we describe its complete primary structure by combination of protein-chemical and mass spectrometric methods. AWN exists as two isoforms, AWN-1 and AWN-2, which differ in that AWN-2 is N-terminally acetylated. The amino acid sequence of AWN contains 133 amino acid residues and two disulphide bridges between nearest-neighbour cysteine residues. Analysis of the amino acid sequence of the AWN proteins showed significant similarity only to AQN-1 and AQN-3, two other boar spermadhesins

    Palaeogenomic insights into the origins of French grapevine diversity

    Get PDF
    Ramos-Madrigal, Jazmín, Runge, Anne Kathrine Wiborg, Bouby, Laurent, Lacombe, Thierry, Castruita, José Alfredo Samaniego, Adam-Blondon, Anne-Françoise, Figueiral, Isabel, Hallavant, Charlotte, Martínez-Zapater, José M., Schaal, Caroline, Töpfer, Reinhard, Petersen, Bent, Sicheritz-Pontén, Thomas, This, Patrice, Bacilieri, Roberto, Gilbert, M. Thomas P., Wales, Nathan (2019): Palaeogenomic insights into the origins of French grapevine diversity. Nature Plants 5: 595-603, DOI: 10.1038/s41477-019-0437-

    Fatou’s Associates

    Get PDF
    Suppose that f is a transcendental entire function, V⊊C is a simply connected domain, and U is a connected component of f-1(V). Using Riemann maps, we associate the map f : U→V to an inner function g : D→D. It is straightforward to see that g is either a finite Blaschke product, or, with an appropriate normalisation, can be taken to be an infinite Blaschke product. We show that when the singular values of f in V lie away from the boundary, there is a strong relationship between singularities of g and accesses to infinity in U. In the case where U is a forward-invariant Fatou component of f, this leads to a very significant generalisation of earlier results on the number of singularities of the map g. If U is a forward-invariant Fatou component of f there are currently very few examples where the relationship between the pair (f, U) and the function g has been calculated. We study this relationship for several well-known families of transcendental entire functions. It is also natural to ask which finite Blaschke products can arise in this manner, and we show the following: for every finite Blaschke product g whose Julia set coincides with the unit circle, there exists a transcendental entire function f with an invariant Fatou component such that g is associated with f in the above sense. Furthermore, there exists a single transcendental entire function f with the property that any finite Blaschke product can be arbitrarily closely approximated by an inner function associated with the restriction of f to a wandering domain
    • …
    corecore