509 research outputs found

    Coherence of Currents in Mesoscopic Cylinders

    Full text link
    The persistent currents driven by the pure Aharonov-Bohm type magnetic field in mesoscopic normal metal or semiconducting cylinders are studied. A two-dimensional (2D) Fermi surfaces are characterized by four parameters. Several conditions for the coherence and enhancement of currents are discussed. These results are then generalized to a three-dimensional (3D) thin-walled cylinder to show that under certain geometric conditions on the Fermi surface, a novel effect - the appearance of spontaneous currents is predicted.Comment: 17 pages, Latex, 8 figures available on request, to be published in Z.Physik

    Radiative return at NLO and the measurement of the hadronic cross-section in electron-positron annihilation

    Get PDF
    Electron-positron annihilation into hadrons plus an energetic photon from initial state radiation allows the hadronic cross-section to be measured over a wide range of energies. The full next-to-leading order QED corrections for the cross-section for e^+ e^- annihilation into a real tagged photon and a virtual photon converting into hadrons are calculated where the tagged photon is radiated off the initial electron or positron. This includes virtual and soft photon corrections to the process e^+ e^- \to \gamma +\gamma^* and the emission of two real hard photons: e^+ e^- \to \gamma + \gamma + \gamma^*. A Monte Carlo generator has been constructed, which incorporates these corrections and simulates the production of two charged pions or muons plus one or two photons. Predictions are presented for centre-of-mass energies between 1 and 10 GeV, corresponding to the energies of DAPHNE, CLEO-C and B-meson factories.Comment: 13 pages, 15 figure

    Flux qubit on mesoscopic nonsuperconducting ring

    Full text link
    The possibility of making a flux qubit on nonsuperconducting mesoscopic ballistic quasi 1D ring is discussed. We showed that such ring can be effectively reduced to a two-state system with two external control parameters. The two states carry opposite persistent currents and are coupled by tunneling which leads to a quantum superposition of states. The qubit states can be manipulated by resonant microwave pulses. The flux state of the sample can be measured by a SQUID magnetometer. Two or more qubits can be coupled by the flux the circulating currents generate. The problem of decoherence is also discussed.Comment: Phys. Rev. B. (accepted

    On the possibility of spontaneous currents in mesoscopie systems

    Get PDF
    It is shown that a mesoscopic metallic system can exhibit a phase transition to a low temperature state with a spontaneous orbital current if it is sufficiently free of elastic defect scattering. The interaction among the electrons, which is the reason of the phase transition, is of the magnetic origin and it leads to an ordered state of the orbital magnetic moments

    Possibility of long-range order in clean mesoscopic cylinders

    Full text link
    A microscopic Hamiltonian of the magnetostatic interaction is discussed. This long-range interaction can play an important role in mesoscopic systems leading to an ordered ground state. The self-consistent mean field approximation of the magnetostatic interaction is performed to give an effective Hamiltonian from which the spontaneous, self-sustaining currents can be obtained. To go beyond the mean field approximation the mean square fluctuation of the total momentum is calculated and its influence on self-sustaining currents in mesoscopic cylinders with quasi-1D and quasi-2D conduction is considered. Then, by the use of the microscopic Hamiltonian of the magnetostatic interaction for a set of stacked rings, the problem of long-range order is discussed. The temperature TT^{*} below which the system is in an ordered state is determined.Comment: 14 pages, REVTeX, 5 figures, in print in Phys. Rev.

    Exact zero-point energy shift in the e(n E)e\otimes (n~E), t(n H)t\otimes (n~H) many modes dynamic Jahn-Teller systems at strong coupling

    Full text link
    We find the exact semiclassical (strong coupling) zero-point energy shifts applicable to the e(nE)e\otimes (n E) and t(nH)t\otimes (n H) dynamic Jahn-Teller problems, for an arbitrary number nn of discrete vibrational modes simultaneously coupled to one single electronic level. We also obtain an analytical formula for the frequency of the resulting normal modes, which has an attractive and apparently general Slater-Koster form. The limits of validity of this approach are assessed by comparison with O'Brien's previous effective-mode approach, and with accurate numerical diagonalizations. Numerical values obtained for t(nH)t\otimes (n H) with n=8n =8 and coupling constants appropriate to C60_{60}^- are used for this purpose, and are discussed in the context of fullerene.Comment: 20 pages, 4 ps figure

    Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030

    Get PDF
    The global impact of shipping on atmospheric chemistry and radiative forcing, as well as the associated uncertainties, have been quantified using an ensemble of ten state-of-the-art atmospheric chemistry models and a predefined set of emission data. The analysis is performed for present-day conditions ( year 2000) and for two future ship emission scenarios. In one scenario ship emissions stabilize at 2000 levels; in the other ship emissions increase with a constant annual growth rate of 2.2% up to 2030 ( termed the "Constant Growth Scenario" (CGS)). Most other anthropogenic emissions follow the IPCC ( Intergovernmental Panel on Climate Change) SRES ( Special Report on Emission Scenarios) A2 scenario, while biomass burning and natural emissions remain at year 2000 levels. An intercomparison of the model results with observations over the Northern Hemisphere (25 degrees - 60 degrees N) oceanic regions in the lower troposphere showed that the models are capable to reproduce ozone (O-3) and nitrogen oxides (NOx= NO+ NO2) reasonably well, whereas sulphur dioxide (SO2) in the marine boundary layer is significantly underestimated. The most pronounced changes in annual mean tropospheric NO2 and sulphate columns are simulated over the Baltic and North Seas. Other significant changes occur over the North Atlantic, the Gulf of Mexico and along the main shipping lane from Europe to Asia, across the Red and Arabian Seas. Maximum contributions from shipping to annual mean near-surface O-3 are found over the North Atlantic ( 5 - 6 ppbv in 2000; up to 8 ppbv in 2030). Ship contributions to tropospheric O3 columns over the North Atlantic and Indian Oceans reach 1 DU in 2000 and up to 1.8 DU in 2030. Tropospheric O-3 forcings due to shipping are 9.8 +/- 2.0 mW/m(2) in 2000 and 13.6 +/- 2.3 mW/m(2) in 2030. Whilst increasing O-3, ship NOx simultaneously enhances hydroxyl radicals over the remote ocean, reducing the global methane lifetime by 0.13 yr in 2000, and by up to 0.17 yr in 2030, introducing a negative radiative forcing. The models show future increases in NOx and O-3 burden which scale almost linearly with increases in NOx emission totals. Increasing emissions from shipping would significantly counteract the benefits derived from reducing SO2 emissions from all other anthropogenic sources under the A2 scenario over the continents, for example in Europe. Globally, shipping contributes 3% to increases in O-3 burden between 2000 and 2030, and 4.5% to increases in sulphate under A2/CGS. However, if future ground based emissions follow a more stringent scenario, the relative importance of ship emissions will increase. Inter-model differences in the simulated O-3 contributions from ships are significantly smaller than estimated uncertainties stemming from the ship emission inventory, mainly the ship emission totals, the distribution of the emissions over the globe, and the neglect of ship plume dispersion
    corecore