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ON THE POSSIBILITY OF SPONTANEOUS
CURRENTS IN MESOSCOPIC SYSTEMS
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D. WOHLLEBEN, P. FRECHE AND M. ESSER

IL Physikalische Institut der Universitat zu Kain
5000 Koln 41, Germany

It is shown that a mesoscopic metallic system can exhibit a phase tran-
sition to a low temperature state with a spontaneous orbital current if it is
sufficiently free of elastic defect scattering. The interaction among the elec-
trons, which is the reason of the phase transition, is of the magnetic origin
and it leads to an ordered state of the orbital magnetic moments.
PACS numbers: 71.30.+h, 72.10.—d, 71.10.+x

Quantum persistent currents in mesoscopic non-superconducting rings
threaded threaded by a magnetic flux aroused great excitement and controversy
in the last years.

They were predicted theoretically [1] some years ago and detected recently
in a collection of isolated mesoscopic rings [2].

The flux 0, which drives the persistent current IN), is the sum of the exter-
nally applied flux eke and of the flux 01 from the persistent current itself

where ϕI = LI and ,C is the self-inductance of the system.
Most theoretical discussions neglect the second term, which is justified by

the experimental structures realized so far.
However, we want to investigate the case when the current I in a sample is

so large that ci cannot be neglected. In a very clean system (low level of elastic
defect scattering), at small Oe and at sufficiently low temperature, ϕI can become
of the order of Oe or even larger. The formula for the current I(ϕ) is a nonlinear
function of q (see later) and becauSe ϕ=ϕe+LI,there iS a possibility of the
existence of solutions with finite I at ϕe = 0, i.e. the solutions with spontaneous
orbital currents.

In this paper we show that in the ballistic regime, i.e. when the elastic mean
free path is larger than the circumference of the ring, a mesoscopic system can make
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a transition from a high temperature state with zero current to a low temperature
state with a persistent current in the absence of an external field. In other words,
we show that the ground state of such a system is in general a flux phase state [3],
i.e. a state with a spontaneous magnetic flux generated by a spontaneous orbital
current.

The transition temperature and the spontaneous persistent current depend
strongly on the geometry of the ring and of the Fermi surface.

To present the idea we perform the model calculations for a system with a
nearly flat Fermi surface (FS) perpendicular to the momentum direction pφ, i.e. a
nearly one-dimensional electron gas. This is the most favorable case because the
current I is then the strongest.

Such a material can be obtained for instance if one winds M metallic chains
(certain organic molecules) in a very weak transverse electrical contact around a
mesoscopic cylinder of a radius R (we use cylindrical coordinates (R, z, (p). Thus
we can visualize our system of N electrons as a set of M current carrying channels.

We work in a gauge for the vector potential in which the field does not ap-
pear explicitly in the Hamiltonian but enters the calculation via the flux-modifled
boundary conditions [4]

In a magnetic fleld Buz the electrons fill the quantized energy levels [4]

where n parametrizes the angular momentum in „p direction, ϕ0 = h/e. To each
en there corresponds a current

and the total current I is

where fFDε n ) is the Fermi-Dirac distribution function.
Equation (1) means that each electron moves not only in the external mag-

netic field but also in the magnetic field produced by all other electrons. Each
current loop is equivalent to the magnetic dipole. The magnetic dipole-dipole in-
teraction is taken here in the mean field approximation. In other words, because of
electromagnetic coupling each electron adds its own contribution to the total flux
and sees the flux of all others, except its own. This works only for many electron
systems and only for M >1.

The system has a set of quantum size energy gaps — the gap at the FS
is A = (ħ2 /mR2 ) nF, where nF numbers the last occupied state. For N 107
electrons moving in M 104 rings with a radius R 400 we get Δ N 300 K.

The total energy is periodic in ϕ0 , the current at kT « 
Δ
 is persistent

because of the gap [4]. It turns out that the properties of the system depend
strongly on the number of electrons.
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In order to understand how the flux phase can be created in the mesoscopic
system let us calculate minimum of the free energy F = E —TS of the system at¢e = O and T = O as a function of (b [5]. Assuming that the number N of electrons
is constant we consider two cases: N/M odd and N/M even. In the first case we
can assume that N = M(2nF + 1), i.e. to each channel there correspond 2n F -1. 1
electrons occupying symmetrically n = 0, ±1, ... , ±nF states. In this case the free
energy is

where the Fermi factor fFD(εn) is a step like a function with the chemical potential
u = e,.4. 4. 1 / 2 . After a little algebra we find that

The free energy of the system with N/M odd increases quadratically with 0, the
terms linear in ϕ cancel because of equal occupation of ±n states and therefore
the ground state is a state with zero flux and zero current.

In the second case when N = M 2nF in each channel we have one odd
electron, which must be placed at ± F. Depending on it will occupy +nF (for

> 0), —nF (for 4" < 0) or both states (for ϕ = 0). The free energy is in this case

i.e. apart from the quadratic term it contains now the term which decreases with
increasing |0|. F has then two minima corresponding to the spontaneous flux at

= O

This flux is approaching 00/2 in the limit of large M and zero in the opposite
limit. Inserting (9) to (8) we get the free energy of the ground state

i.e. the energy of the state with a spontaneous flux is lower than the energy of the
electrons at zero current (equal partial occupation of ± F states). A ground state
with a spontaneous flux may be called a flux phase state [3]. In this state we have
a spontaneous orbital current

which remains persistent also for 0 < kT K Δ. The current (11) approaches
I0 /2 ≡ ¢0 /2.0 in the limit of large M and zero in the opposite limit. We neglect the
contribution due to spin because, if the spin and orbital moments of not completely
filled shells in atoms are comparable, in mesoscopic systems the latter dominate.
In short, at T = O and 4"e = O the mesoscopic system considered here carries in
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general a spontaneous flux coming from the uncompensated orbital currents. This
spontaneous current is a ground state property it will vanish at temperatures in
the neighborhood of

see Eq. (10).
Let us investigate now the temperature dependence of the free energy of the

system [6]

where the chemical potential is calculated from the condition

The numerical calculations of F(T, O, N) at ¢e = O are presented in Fig. 1
for N/M odd and in Fig. 2 for N/M even.

In the case of N/M odd the free energy always has an absolute minimum at
= 0. It has also some local minima at ϕ= nϕ0.

The situation looks different at N/M even. At low T we have two symmetric
minima of F, corresponding at T = 0, to spontaneous fluxes given by Eq. (9),
separated by a maximum at ϕ = 0.
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With increasing T the minima become shallower with a simultaneous de-
crease in q5. At a certain temperature Tc , F(( ϕ)has the inflection point and at
T > Tc we have only one minimum at = 0.

We see that there exists a certain temperature Tc , below which the system
spontaneously breaks the symmetry, i.e. it comes to the state with the spontaneous
magnetic flux 0. In other words, for T above Te , F is simply a parabolic shaped
curve, with a well-deflned minimum. As T approaches Tc , the minimum becomes
shallower. When T passes through Tc , the minimum at ϕ = O becomes a local
maximum and the minima develop at (b = ±ϕsp .

Osp can be treated as an order parameter because it has the following prop-
erties:

1. Ii the disordered phase at T > Tc (Asp = 0, whereas in the ordered phase
at T<Tc (Asp # 0.

2. ϕsptends continuously to zero in the ordered phase ifT
3. Below Tc the order parameter is not fully determined by the external

conditions, but on an equal footing it can have two values minimizing the free
energy.

Let us expand the free energy F given by Eq. (13) in a series of for Oe = 0,
at temperatures close to 71, and look for the expansion coefficients

where F0 is the free energy in the disordered phase. It follows from the symmetry

properties of
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We see that α(Tc) 0, a(T >	 > 0, α(T < Tc) < O. In the neighborhood of Tc
a can be approximated by a linear relation

which corresponds to a second order phase transition. The transition temperature
can be calculated from the equation a(T) = 0. Thus the energy (13) at T ≈ Tc
describes the phase transition from the high temperature phase with ϕ = O to the
low temperature phase with ϕ ≠ 0.
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The value of the spontaneous current and hence the spontaneous flux can be
calculated in a direct way using Eq. (5) for the current. Let us consider the case
with a spontaneous flux, i.e. when N/M is even. For the convenience of numerical
calculations we bring this equation to the form, in which the summation over
the whole spectrum of states en (—oo < n < +oo), is well approximated by the
summation over s states in the neighborhood of the Fermi level nF — s < |n| <
nF + S

where c= eh/m.L2. On the other hand we want to have a current that corresponds
to the minimum of the free energy (13). It occurs that the condition for that
extremum (eF = 0) yields, for flxed T, N and 0e, Eq. (1) which we now rewrite
in a form

The graphical solutions of those two self-consistent equations for zero external field
(Oe = 0) are presented in Fig. 4. The intersection of the two curves give the values
of the spontaneous current.

At high T the only solution is I = 0. At T < Tc , (Tc is a temperature at which
the curve of Eq. (21) is tangent to the curve of Eq. (20)) the two new solutions
appear. They correspond to the spontaneous orbital currents (spontaneous orbital
magnetic moments) and they are at the minimum of the free energy.

The interaction among the electrons which is the reason of the phase transi-
tion to the low temperature ordered phase is here of the magnetic origin, namely
of the dipole—dipole type.
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It resembles the ferromagnetic ordered state due to the exchange interaction
among spins in ferromagnets. However, there are some important differences. One
of them is the following. If we apply the external magnetic field to the ferromagnet
in the ordered state we get a paramagnetic reaction. In our case the application of
¢e always gives a diamagnetic reaction at low T. One can see it from the formula
(21) and Fig. 4 if we take O e 0. The straight line I(ϕ) = (1/r) (ϕ —ϕe) moves
then down and the cross-section will be at lower I (lower spontaneous moment)
and at low T.

The phenomenon presented by us resembles strongly the early efforts to
explain ferromagnetism by the magnetic interaction (see e.g. [7]).

The spontaneous flux as a function of temperature for ten equally spaced
values of N : 2nFM < N < (2nF -F 1)M is presented in Fig. 5. We observe the

following features: At high T Osp = O at all N/M and there is no flux down to
the lowest T for odd N/M. For N/M even with decreasing T a spontaneous flux
appears at a certain temperature Tc and increases up to the value which is roughly
proportional to the deviation δ(0 <δ<1) ofN/Mfrom exactly odd

The above considerations show that while depending on the N/M ratio one
can get almost any value for Osp but in discrete steps. The flux, which minimizes
the total energy, now enters the boundary conditions via Eq. (2). A flux ϕ nϕ0 is
mathematically equivalent to a change in the boundary conditions. In other words,
the spontaneous flux can shift the phase of the single electron states by any value
between 0 < |δX| - 2π  |ϕspl /ϕ0 < π, depending on the parameters of the system.

This distinguishes flux phase states from the current carrying states of certain
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atoms with partially fllled shells. In such atoms the self-inductance and the number
of channels are so small that Osp f< O0, i.e. always |δ| « π.

The above mean field results will be reduced by fluctuations. Below Tc the
system is in a minimum of a mean field F(0), at the finite spontaneous flux Osp .
The difference AF E F(0) — F(ϕsp) is ΔF  1(ϕ2sp/2)d2F/dϕ2|ϕ=0  = P/4G. If
the energy ef driving the fluctuations is small (ef « ΔF), the resulting Gaussian
fluctuations AO of the flux will be given by

In the case of the thermal current fluctuations, driven e.g. by inelastic electron—
phonon scattering, we have of < kBT/2, i.e.∆ϕ(T) < (LkBT)1/2 . For our ring

i.e. ∆ϕ(T) « ϕ(T) except close to Tc (see Fig. 5). Near T = O quantum fluctuations
are driven by the zero point motion of the electromagnetic fleld. A zero-point
photon with the energy by = helλ = 26 can cause virtual electron hole excitations
across the gap 2A = ε(nF + 1) — ε(nF). Quantum fluctuations of the ring current
will then be driven by of = 2∆(R/λ)3 = 2Δ(2vF/c)3 , (λ R). In our case
of = 2∆(R/

λ
)3 30 µIt. The reductions of the mean field Tc 's by thermal and

quantum fluctuationś will therefore remain small.
Summarising we have shown that a sufficiently pure mesoscopic metallic

system can exhibit a phase transition to a low temperature state with a persistent
current in zero external flux due to the magnetic coupling of electrons. We have
estimated the dependence of the spontaneous orbital current (flux) on the number
of particles and on temperature.
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