702 research outputs found

    Combining scanning probe microscopy and x-ray spectroscopy

    Get PDF
    A new versatile tool, combining Shear Force Microscopy and X-Ray Spectroscopy was designed and constructed to obtain simultaneously surface topography and chemical mapping. Using a sharp optical fiber as microscope probe, it is possible to collect locally the visible luminescence of the sample. Results of tests on ZnO and on ZnWO4 thin layers are in perfect agreement with that obtained with other conventional techniques. Twin images obtained by simultaneous acquisition in near field of surface topography and of local visible light emitted by the sample under X-Ray irradiation in synchrotron environment are shown. Replacing the optical fibre by an X-ray capillary, it is possible to collect local X-ray fluorescence of the sample. Preliminary results on Co-Ti sample analysis are presented

    Association of mixed hematopoietic chimerism with elevated circulating autoantibodies and chronic graft-versus-host disease occurrence.

    No full text
    International audienceBACKGROUND: Use of a reduced-intensity conditioning regimen before an allogeneic hematopoietic cell transplantation is frequently associated with an early state of mixed hematopoietic chimerism. Such a coexistence of both host and donor hematopoietic cells may influence posttransplant alloreactivity and may affect the occurrence and severity of acute and chronic graft-versus-host disease (GVHD) as well as the intensity of the graft-versus-leukemia effect. Here we evaluated the relation between chimerism state after reduced-intensity conditioning transplantation (RICT), autoantibody production, and chronic GVHD (cGVHD)-related pathology. METHODS: Chimerism state, circulating anticardiolipin, and antidouble stranded DNA autoantibody (Ab) titers as well as occurrence of cGVHD-like lesions were investigated in a murine RICT model. RESULTS: We observed a novel association between mixed chimerism state, high levels of pathogenic IgG autoantibodies, and subsequent development of cGVHD-like lesions. Furthermore, we found that the persistence of host B cells, but not dendritic cell origin or subset, was a factor associated with the appearance of cGVHD-like lesions. The implication of host B cells was confirmed by a host origin of autoantibodies. CONCLUSION: Recipient B cell persistence may contribute to the frequency and/or severity of cGVHD after RICT

    Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis

    Get PDF
    Non-target analysis (NTA) employing high-resolution mass spectrometry is a commonly applied approach for the detection of novel chemicals of emerging concern in complex environmental samples. NTA typically results in large and information-rich datasets that require computer aided (ideally automated) strategies for their processing and interpretation. Such strategies do however raise the challenge of reproducibility between and within different processing workflows. An effective strategy to mitigate such problems is the implementation of inter-laboratory studies (ILS) with the aim to evaluate different workflows and agree on harmonized/standardized quality control procedures. Here we present the data generated during such an ILS. This study was organized through the Norman Network and included 21 participants from 11 countries. A set of samples based on the passive sampling of drinking water pre and post treatment was shipped to all the participating laboratories for analysis, using one pre-defined method and one locally (i.e. in-house) developed method. The data generated represents a valuable resource (i.e. benchmark) for future developments of algorithms and workflows for NTA experiments

    NLRC5 Exclusively Transactivates MHC Class I and Related Genes through a Distinctive SXY Module

    Get PDF
    MHC class II (MHCII) genes are transactivated by the NOD-like receptor (NLR) family member CIITA, which is recruited to SXY enhancers of MHCII promoters via a DNA-binding "enhanceosome" complex. NLRC5, another NLR protein, was recently found to control transcription of MHC class I (MHCI) genes. However, detailed understanding of NLRC5's target gene specificity and mechanism of action remained lacking. We performed ChIP-sequencing experiments to gain comprehensive information on NLRC5-regulated genes. In addition to classical MHCI genes, we exclusively identified novel targets encoding non-classical MHCI molecules having important functions in immunity and tolerance. ChIP-sequencing performed with Rfx5(-/-) cells, which lack the pivotal enhanceosome factor RFX5, demonstrated its strict requirement for NLRC5 recruitment. Accordingly, Rfx5-knockout mice phenocopy Nlrc5 deficiency with respect to defective MHCI expression. Analysis of B cell lines lacking RFX5, RFXAP, or RFXANK further corroborated the importance of the enhanceosome for MHCI expression. Although recruited by common DNA-binding factors, CIITA and NLRC5 exhibit non-redundant functions, shown here using double-deficient Nlrc5(-/-)CIIta(-/-) mice. These paradoxical findings were resolved by using a "de novo" motif-discovery approach showing that the SXY consensus sequence occupied by NLRC5 in vivo diverges significantly from that occupied by CIITA. These sequence differences were sufficient to determine preferential occupation and transactivation by NLRC5 or CIITA, respectively, and the S box was found to be the essential feature conferring NLRC5 specificity. These results broaden our knowledge on the transcriptional activities of NLRC5 and CIITA, revealing their dependence on shared enhanceosome factors but their recruitment to distinct enhancer motifs in vivo. Furthermore, we demonstrated selectivity of NLRC5 for genes encoding MHCI or related proteins, rendering it an attractive target for therapeutic intervention. NLRC5 and CIITA thus emerge as paradigms for a novel class of transcriptional regulators dedicated for transactivating extremely few, phylogenetically related genes

    Small terrestrial mammals (Rodentia and Soricomorpha) along a gradient of forest anthropisation (reserves, managed forests, urban parks) in France

    Get PDF
    International audienceBackground:Understanding the relationships between wildlife biodiversity and zoonotic infectious diseases in a changing climate is a challenging issue that scientists must address to support further policy actions. We aim at tackling this challenge by focusing on small mammal-borne diseases in temperate forests and large urban green spaces. Small mammals are important reservoirs of zoonotic agents, with a high transmission potential for humans and domestic animals. Forests and large urban green spaces are ecosystems where efforts are undertaken to preserve biodiversity. They are put forward for their contribution to human well-being in addition to other ecosystem services (e.g. provisioning and regulating services). Moreover, forests and large urban green spaces areenvironments where small mammals are abundant and human/domestic-wildlife interactions are plausible to occur. These environments are, therefore, focal points for conservation management and public health issues.New information:The European Biodiversa BioRodDis project (https://www6.inrae.fr/biodiversa-bioroddis) aims at better understanding the relationships between small terrestrial mammal biodiversity and health in the context of global change and, in particular, of forest anthropisation and urbanisation. Here, we present the data gathered in France.The dataset will enable us to describe the diversity of small terrestrial mammal communities in forested areas corresponding to different levels of anthropisation and to evaluate the variability of this diversity over time, between seasons and years. The dataset contains occurrences of small terrestrial mammals (Rodentia and Soricomorpha) trapped in forested areas in eastern France (administrative Departments: Rhone, Ain, Jura). The sampling sites correspond to different degrees of anthropisation. Forests included in biological reserves are the least anthropised sites. Then, public forests and urban parks experience increasing levels of anthropisation. Data were collected during spring and autumn 2020 (three to four sampling sites), 2021 (six sampling sites) and 2022 (four sampling sites). These variations in the number of sites between years were due to lockdown restrictions in 2020 or to the legal authorisation to trap around biological reserves granted in 2021 only. The capture of animals was carried out in various types of forests (pine, deciduous, mixed) and in different habitats within urban parks (wooded areas, buildings, hay storage yards, riverside vegetation, restaurants, playground for kids, botanical garden, landfills). Animals were captured using live traps that were set on the ground for one to 11 nights. During this study period, 1593 small mammals were trapped and identified. They belong to 15 species, amongst which were nine species of rodents (Muridae, Cricetidae, Gliridae) and six species of shrews (Soricidae). They were weighted (gram) and measured (cm): head-body length, tail length and hind-foot length. Sexual characteristics were also recorded

    Small terrestrial mammals (Rodentia and Soricomorpha) along a gradient of forest anthropisation (reserves, managed forests, urban parks) in France

    No full text
    International audienceBackgroundUnderstanding the relationships between wildlife biodiversity and zoonotic infectious diseases in a changing climate is a challenging issue that scientists must address to support further policy actions. We aim at tackling this challenge by focusing on small mammal-borne diseases in temperate forests and large urban green spaces. Small mammals are important reservoirs of zoonotic agents, with a high transmission potential for humans and domestic animals. Forests and large urban green spaces are ecosystems where efforts are undertaken to preserve biodiversity. They are put forward for their contribution to human well-being in addition to other ecosystem services (e.g. provisioning and regulating services). Moreover, forests and large urban green spaces areenvironments where small mammals are abundant and human/domestic-wildlife interactions are plausible to occur. These environments are, therefore, focal points for conservation management and public health issues.New informationThe European Biodiversa BioRodDis project (https://www6.inrae.fr/biodiversa-bioroddis) aims at better understanding the relationships between small terrestrial mammal biodiversity and health in the context of global change and, in particular, of forest anthropisation and urbanisation. Here, we present the data gathered in France.The dataset will enable us to describe the diversity of small terrestrial mammal communities in forested areas corresponding to different levels of anthropisation and to evaluate the variability of this diversity over time, between seasons and years. The dataset contains occurrences of small terrestrial mammals (Rodentia and Soricomorpha) trapped in forested areas in eastern France (administrative Departments: Rhone, Ain, Jura). The sampling sites correspond to different degrees of anthropisation. Forests included in biological reserves are the least anthropised sites. Then, public forests and urban parks experience increasing levels of anthropisation. Data were collected during spring and autumn 2020 (three to four sampling sites), 2021 (six sampling sites) and 2022 (four sampling sites). These variations in the number of sites between years were due to lockdown restrictions in 2020 or to the legal authorisation to trap around biological reserves granted in 2021 only. The capture of animals was carried out in various types of forests (pine, deciduous, mixed) and in different habitats within urban parks (wooded areas, buildings, hay storage yards, riverside vegetation, restaurants, playground for kids, botanical garden, landfills). Animals were captured using live traps that were set on the ground for one to 11 nights. During this study period, 1593 small mammals were trapped and identified. They belong to 15 species, amongst which were nine species of rodents (Muridae, Cricetidae, Gliridae) and six species of shrews (Soricidae). They were weighted (gram) and measured (cm): head-body length, tail length and hind-foot length. Sexual characteristics were also recorded

    Small terrestrial mammals (Rodentia and Soricomorpha) along a gradient of forest anthropization (reserves, managed forests, urban parks) in France

    No full text
    Understanding the relationships between wildlife biodiversity and zoonotic infectious diseases in a changing climate is a challenging issue that scientists must address to support further policy actions. We aim at tackling this challenge by focusing on small mammal-borne diseases in temperate forests and large urban green spaces. Small mammals are important reservoirs of zoonotic agents; forests and green spaces are environments where small mammals are abundant, human/domestic-wildlife interactions are plausible to occur, and efforts are undertaken to preserve biodiversity.The dataset contains occurrences of small terrestrial mammals (Rodentia and Soricomorpha) trapped in forested areas in Eastern France (administrative departments: Rhône, Ain, Jura). The sampling sites correspond to different degrees of anthropization. Forests included in biological reserves are the less anthropized sites, then public forests and urban parks experience increasing levels of anthropization. Data were collected during spring and autumn 2020 (three to four sampling sites), 2021 (six sampling sites) and 2022 (four sampling sites). These variations in the number of sites between years were due to lockdown restrictions in 2020, or to the legal authorization to trap around biological reserves granted in 2021 only. The capture of animals was carried out in various types of forests (pine, deciduous, mixed), and in different habitats within urban parks (wooded areas, buildings, hay storage yards, riverside vegetation, restaurants, playground for kids, botanical garden, landfills…). Captures were realised using live traps that were set on the ground for one to 11 nights. During this study period, 1593 small mammals were trapped and identified. They belong to 15 species, among which there are nine species of rodents (Muridae, Cricetidae, Gliridae) and six species of shrews (Soricidae). They were weighted (gram) and measured (cm): both head body length, tail and hind foot length. Sexual characteristics were also recorded. This dataset aims to better understand the relationships between small terrestrial mammal biodiversity and health in the context of global change, and in particular of forest anthropization and urbanization. It is part of the European Biodiversa BioRodDis project (https://www6.inrae.fr/biodiversa-bioroddis). Here we present the data gathered in France. The dataset will enable to describe the diversity of small terrestrial mammal communities in forested areas corresponding to different levels of anthropization, and to evaluate the variability of this diversity over time, between seasons and years
    corecore