6 research outputs found

    Water relations and drought response of Pinus strobiformis

    No full text
    Southwestern white pine (Pinus strobiformis Engelm.) faces dual threats of climate change shifting its environmental niche and mortality due to a nonnative, invasive fungal pathogen. To inform efforts to sustain this species, we established experimental field trials in three common gardens along an elevational gradient with drought treatments to assess trait responses in southwestern white pine. We measured predawn and midday water potential on 44 maternal families from 10 populations at each garden. We used regression between predawn and midday water potentials to estimate hydroscape area, an index of stomatal regulation of transpiration. We measured leaf carbon isotope ratio and estimated carbon isotope discrimination and leaf mass per area to understand the effects of gardens and treatments on stomatal aperture and leaf structure. Water stress caused by experimental drought and temperature decreased leaf carbon isotope discrimination and leaf mass per area, indicating formation of thin leaves with low stomatal conductance in response to heat and drought. The hydroscape area of southwestern white pine suggests tight control of transpiration via stomatal closure, similar to other isohydric pines. Families with greater stomatal closure (inferred from carbon isotope ratio) at the warm, dry garden had higher survival than other families, suggesting an important role of isohydry in acclimation of southwestern white pine to expected habitat drying and warming.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    PR interval genome-wide association meta-analysis identifies 50 loci associated with atrial and atrioventricular electrical activity

    No full text
    Electrocardiographic PR interval measures atrio-ventricular depolarization and conduction, and abnormal PR interval is a risk factor for atrial fibrillation and heart block. Our genome-wide association study of over 92,000 European-descent individuals identifies 44 PR interval loci (34 novel). Examination of these loci reveals known and previously not-yet-reported biological processes involved in cardiac atrial electrical activity. Genes in these loci are over-represented in cardiac disease processes including heart block and atrial fibrillation. Variants in over half of the 44 loci were associated with atrial or blood transcript expression levels, or were in high linkage disequilibrium with missense variants. Six additional loci were identified either by meta-analysis of ~105,000 African and European-descent individuals and/or by pleiotropic analyses combining PR interval with heart rate, QRS interval, and atrial fibrillation. These findings implicate developmental pathways, and identify transcription factors, ion-channel genes, and cell-junction/cell-signaling proteins in atrio-ventricular conduction, identifying potential targets for drug development. © 2018, The Author(s)

    PR interval genome-wide association meta-analysis identifies 50 loci associated with atrial and atrioventricular electrical activity

    Get PDF
    Electrocardiographic PR interval measures atrio-ventricular depolarization and conduction, and abnormal PR interval is a risk factor for atrial fibrillation and heart block. Our genomewide association study of over 92,000 European-descent individuals identifies 44 PR interval loci (34 novel). Examination of these loci reveals known and previously not-yet-reported biological processes involved in cardiac atrial electrical activity. Genes in these loci are overrepresented in cardiac disease processes including heart block and atrial fibrillation. Variants in over half of the 44 loci were associated with atrial or blood transcript expression levels, or were in high linkage disequilibrium with missense variants. Six additional loci were identified either by meta-analysis of similar to 105,000 African and European-descent individuals and/or by pleiotropic analyses combining PR interval with heart rate, QRS interval, and atrial fibrillation. These findings implicate developmental pathways, and identify transcription factors, ionchannel genes, and cell-junction/cell-signaling proteins in atrio-ventricular conduction, identifying potential targets for drug development
    corecore