25 research outputs found

    Antibacterial Oligomeric Polyphenols from the Green Alga Cladophora socialis

    Get PDF
    A series of oligomeric phenols including the known natural product 3,4,3′,4′-tetrahydroxy-1,1′-biphenyl (3), the previously synthesized 2,3,8,9-tetrahydroxybenzo[c]-chromen-6-one (4), and eight new related natural products, cladophorols B−I (5−12), were isolated from the Fijian green alga Cladophora socialis and identified by a combination of NMR spectroscopy, mass spectrometric analysis, and computational modeling using DFT calculations. J-resolved spectroscopy and line width reduction by picric acid addition aided in resolving the heavily overlapped aromatic signals. A panel of Gram-positive and Gram-negative pathogens used to evaluate pharmacological potential led to the determination that cladophorol C (6) exhibits potent antibiotic activity selective toward methicillin-resistant Staphylococcus aureus (MRSA) with an MIC of 1.4 μg/mL. Cladophorols B (5) and D−H (7−11) had more modest but also selective antibiotic potency. Activities of cladophorols A−I (4−12) were also assessed against the asexual blood stages of Plasmodium falciparum and revealed cladophorols A (4) and B (5) to have modest activity with EC50 values of 0.7 and 1.9 μg/mL, respectively

    Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial.

    Get PDF
    BACKGROUND: Staphylococcus aureus bacteraemia is a common cause of severe community-acquired and hospital-acquired infection worldwide. We tested the hypothesis that adjunctive rifampicin would reduce bacteriologically confirmed treatment failure or disease recurrence, or death, by enhancing early S aureus killing, sterilising infected foci and blood faster, and reducing risks of dissemination and metastatic infection. METHODS: In this multicentre, randomised, double-blind, placebo-controlled trial, adults (≥18 years) with S aureus bacteraemia who had received ≤96 h of active antibiotic therapy were recruited from 29 UK hospitals. Patients were randomly assigned (1:1) via a computer-generated sequential randomisation list to receive 2 weeks of adjunctive rifampicin (600 mg or 900 mg per day according to weight, oral or intravenous) versus identical placebo, together with standard antibiotic therapy. Randomisation was stratified by centre. Patients, investigators, and those caring for the patients were masked to group allocation. The primary outcome was time to bacteriologically confirmed treatment failure or disease recurrence, or death (all-cause), from randomisation to 12 weeks, adjudicated by an independent review committee masked to the treatment. Analysis was intention to treat. This trial was registered, number ISRCTN37666216, and is closed to new participants. FINDINGS: Between Dec 10, 2012, and Oct 25, 2016, 758 eligible participants were randomly assigned: 370 to rifampicin and 388 to placebo. 485 (64%) participants had community-acquired S aureus infections, and 132 (17%) had nosocomial S aureus infections. 47 (6%) had meticillin-resistant infections. 301 (40%) participants had an initial deep infection focus. Standard antibiotics were given for 29 (IQR 18-45) days; 619 (82%) participants received flucloxacillin. By week 12, 62 (17%) of participants who received rifampicin versus 71 (18%) who received placebo experienced treatment failure or disease recurrence, or died (absolute risk difference -1·4%, 95% CI -7·0 to 4·3; hazard ratio 0·96, 0·68-1·35, p=0·81). From randomisation to 12 weeks, no evidence of differences in serious (p=0·17) or grade 3-4 (p=0·36) adverse events were observed; however, 63 (17%) participants in the rifampicin group versus 39 (10%) in the placebo group had antibiotic or trial drug-modifying adverse events (p=0·004), and 24 (6%) versus six (2%) had drug interactions (p=0·0005). INTERPRETATION: Adjunctive rifampicin provided no overall benefit over standard antibiotic therapy in adults with S aureus bacteraemia. FUNDING: UK National Institute for Health Research Health Technology Assessment

    Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.

    Get PDF
    We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Discovery and Evaluation of Antimalarial, Anthelmintic, and Antimicrobial Marine Natural Products

    Get PDF
    Historically, natural products have served as valuable sources of drugs to treat many human diseases. Although many natural products are derived from terrestrial sources, the marine environment has the potential to provide a vast array of novel drug molecules since more than 70% of Earth’s surface is covered by relatively unexplored ocean habitats. An important aspect of the drug discovery process is evaluation of the mechanism of action (MOA) of bioactive molecules as this provides valuable information about the interaction of drug molecules with their target pathogen and allows for intelligent deployment of pharmaceuticals. Another relevant question to ask is what roles newly discovered marine natural products play in native environments since marine organisms do not encounter the same pathogens as humans in their own habitats. The work presented in this dissertation touches on all three of these research areas. The topic of drug discovery was explored through evaluation of extracts from marine organisms that exhibited either antimalarial or anthelmintic properties. This led to the identification of five antimalarial natural products, including the known compound lyngbyabellin A with promising nanomolar antimalarial activity and the novel molecule kakeromamide B, from a cyanobacterium Moorea producens. The MOA of kakeromamide B was evaluated using a computational approach to generate hypotheses about proteins that bind to the natural product, which were subsequently assessed experimentally. A metabolomics approach was used to investigate the MOA of a natural product isolated from the green alga Cladophora socialis against methicillin-resistant Staphylococcus aureus (MRSA). Preliminary experiments indicated that metabolomics successfully differentiated 1H NMR spectral data generated for MRSA treated with a range of antibiotics, however, further experiments are required to fully elucidate the MOA of cladophorol D. Evaluation of the ecological role of the natural product peyssonnoside A, isolated from a red alga Peyssonnelia sp., found that this natural product suppresses growth of a marine fungus, indicating an antifungal ecological role. In summary, this dissertation provides a comprehensive view of the many milestones involved in the natural product drug discovery process, from collection of marine organisms in the field to isolation and structural elucidation of bioactive natural products, and exploration of their biological functions. Important insights were gained by probing the ecological role of a natural product in its natural environment and evaluating possible MOAs of isolated natural products against human pathogens.Ph.D

    Recent trends in the structural revision of natural products

    Get PDF
    This article reviews recent reports on the structural revision of natural products. Through a critical assessment of the original and revised published structures, the article addresses why each structure was targeted for revision, discusses the techniques and key discrepancies that led to the proposal of the revised structure, and offers measures that may have been taken during the original structure determination to prevent error. With the revised structures in hand, weaknesses of original proposals are assessed, providing a better understanding on the logic behind structure determination

    Peyssonnosides A–B, unusual diterpene glycosides with a sterically encumbered cyclopropane motif : structure elucidation using an integrated spectroscopic and computational workflow

    Get PDF
    Two sulfated diterpene glycosides featuring a highly substituted and sterically encumbered cyclopropane ring have been isolated from the marine red alga Peyssonnelia sp. Combination of a wide array of 2D NMR spectroscopic experiments, in a systematic structure elucidation workflow, revealed that peyssonnosides A–B (1–2) represent a new class of diterpene glycosides with a tetracyclo [7.5.0.01,10.05,9] tetradecane architecture. A salient feature of this workflow is the unique application of quantitative interproton distances obtained from the rotating frame Overhauser effect spectroscopy (ROESY) NMR experiment, wherein the β-d-glucose moiety of 1 was used as an internal probe to unequivocally determine the absolute configuration, which was also supported by optical rotatory dispersion (ORD). Peyssonnoside A (1) exhibited promising activity against liver stage Plasmodium berghei and moderate antimethicillin-resistant Staphylococcus aureus (MRSA) activity, with no cytotoxicity against human keratinocytes. Additionally, 1 showed strong growth inhibition of the marine fungus Dendryphiella salina indicating an antifungal ecological role in its natural environment. The high natural abundance and novel carbon skeleton of 1 suggests a rare terpene cyclase machinery, exemplifying the chemical diversity in this phylogenetically distinct marine red alga

    Follow-on rifaximin for the prevention of recurrence following standard treatment of infection with clostridium fifficile (RAPID): a randomised placebo controlled trial

    Get PDF
    ©2018 The Authors. Published by BMJ. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: http://dx.doi.org/10.1136/gutjnl-2018-316794Background Clostridium difficile infection (CDI) recurs after initial treatment in approximately one in four patients. A single-centre pilot study suggested that this could be reduced using ’follow-on’ rifaximin treatment. We aimed to assess the efficacy of rifaximin treatment in preventing recurrence. Methods A multisite, parallel group, randomised, placebo controlled trial recruiting patients aged ≥18 years immediately after resolution of CDI through treatment with metronidazole or vancomycin. Participants received either rifaximin 400mg three times a day for 2weeks, reduced to 200mg three times a day for a further 2weeks or identical placebo. The primary endpoint was recurrence of CDI within 12 weeks of trial entry. Results Between December 2012 and March 2016, 151 participants were randomised to either rifaximin or placebo. Primary outcome data were available on 130. Mean age was 71.9 years (SD 15.3). Recurrence within 12 weeks was 29.5% (18/61) among participants allocated to placebo compared with 15.9% (11/69) among those allocated to rifaximin, a difference between groups of 13.7% (95% CI −28.1% to 0.7%, p=0.06). The risk ratio was 0.54 (95% CI 0.28 to 1.05, p=0.07). During 6-month safety follow-up, nine participants died in each group (12%). Adverse event rates were similar between groups. Conclusion While ’follow-on’ rifaximin after CDI appeared to halve recurrence rate, we failed to reach our recruitment target in this group of frail elderly patients, so the estimated effect of rifaximin lacks precision. A meta-analysis including a previous trial suggests that rifaximin may be effective; however, further, larger confirmatory studies are needed.The trial was sponsored by the University of Nottingham, was coordinated from the Nottingham Clinical Trials Unit and was supported by the National Institute for Health Research Clinical Research Network

    British Society of Breast Radiology Annual Scientific Meeting 2016

    No full text

    Partnership for Research on Ebola VACcination (PREVAC): protocol of a randomized, double-blind, placebo-controlled phase 2 clinical trial evaluating three vaccine strategies against Ebola in healthy volunteers in four West African countries

    No full text
    International audienceAbstract Introduction The Ebola virus disease (EVD) outbreak in 2014–2016 in West Africa was the largest on record and provided an opportunity for large clinical trials and accelerated efforts to develop an effective and safe preventative vaccine. Multiple questions regarding the safety, immunogenicity, and efficacy of EVD vaccines remain unanswered. To address these gaps in the evidence base, the Partnership for Research on Ebola Vaccines (PREVAC) trial was designed. This paper describes the design, methods, and baseline results of the PREVAC trial and discusses challenges that led to different protocol amendments. Methods This is a randomized, double-blind, placebo-controlled phase 2 clinical trial of three vaccine strategies against the Ebola virus in healthy volunteers 1 year of age and above. The three vaccine strategies being studied are the rVSVΔG-ZEBOV-GP vaccine, with and without a booster dose at 56 days, and the Ad26.ZEBOV,MVA-FN-Filo vaccine regimen with Ad26.ZEBOV given as the first dose and the MVA-FN-Filo vaccination given 56 days later. There have been 4 versions of the protocol with those enrolled in Version 4.0 comprising the primary analysis cohort. The primary endpoint is based on the antibody titer against the Ebola virus surface glycoprotein measured 12 months following the final injection. Results From April 2017 to December 2018, a total of 5002 volunteers were screened and 4789 enrolled. Participants were enrolled at 6 sites in four countries (Guinea, Liberia, Sierra Leone, and Mali). Of the 4789 participants, 2560 (53%) were adults and 2229 (47%) were children. Those < 18 years of age included 549 (12%) aged 1 to 4 years, 750 (16%) 5 to 11 years, and 930 (19%) aged 12–17 years. At baseline, the median (25th, 75th percentile) antibody titer to Ebola virus glycoprotein for 1090 participants was 72 (50, 116) EU/mL. Discussion The PREVAC trial is evaluating—placebo-controlled—two promising Ebola candidate vaccines in advanced stages of development. The results will address unanswered questions related to short- and long-term safety and immunogenicity for three vaccine strategies in adults and children. Trial registration ClinicalTrials.gov NCT02876328 . Registered on 23 August 2016
    corecore