21 research outputs found

    Cyber threat intelligence sharing: Survey and research directions

    Get PDF
    Cyber Threat Intelligence (CTI) sharing has become a novel weapon in the arsenal of cyber defenders to proactively mitigate increasing cyber attacks. Automating the process of CTI sharing, and even the basic consumption, has raised new challenges for researchers and practitioners. This extensive literature survey explores the current state-of-the-art and approaches different problem areas of interest pertaining to the larger field of sharing cyber threat intelligence. The motivation for this research stems from the recent emergence of sharing cyber threat intelligence and the involved challenges of automating its processes. This work comprises a considerable amount of articles from academic and gray literature, and focuses on technical and non-technical challenges. Moreover, the findings reveal which topics were widely discussed, and hence considered relevant by the authors and cyber threat intelligence sharing communities

    Long-term experimental drought alters floral scent and pollinator visits in a Mediterranean plant community despite overall limited impacts on plant phenotype and reproduction

    No full text
    1. Pollinators are declining globally, with climate change implicated as an important driver. Climate change can induce phenological shifts and reduce floral resources for pollinators, but little is known about its effects on floral attractiveness and how this might cascade to affect pollinators, pollination functions and plant fitness. 2. We used an in situ long-term drought experiment to investigate multiple impacts of reduced precipitation in a natural Mediterranean shrubland, a habitat where climate change is predicted to increase the frequency and intensity of droughts. Focusing on three insect-pollinated plant species that provide abundant rewards and support a diversity of pollinators (Cistus albidus, Salvia rosmarinus and Thymus vulgaris), we investigated the effects of drought on a suite of floral traits including nectar production and floral scent. We also measured the impact of reduced rainfall on pollinator visits, fruit set and germination in S. rosmarinus and C. albidus. 3. Drought altered floral emissions of all three plant species qualitatively, and reduced nectar production in T. vulgaris only. Apis mellifera and Bombus gr. terrestris visited more flowers in control plots than drought plots, while small wild bees visited more flowers in drought plots than control plots. Pollinator species richness did not differ significantly between treatments. Fruit set and seed set in S. rosmarinus and C. albidus did not differ significantly between control and drought plots, but seeds from drought plots had slower germination for S. rosmarinus and marginally lower germination success in C. albidus. 4. Synthesis. Overall, we found limited but consistent impacts of a moderate experimental drought on floral phenotype, plant reproduction and pollinator visits. Increased aridity under climate change is predicted to be stronger than the level assessed in the present study. Drought impacts will likely be stronger and this could profoundly affect the structure and functioning of plant–pollinator networks in Mediterranean ecosystems.</p

    Long-term experimental drought alters floral scent and pollinator visits in a Mediterranean plant community despite overall limited impacts on plant phenotype and reproduction

    No full text
    Abstract Pollinators are declining globally, with climate change implicated as an important driver. Climate change can induce phenological shifts and reduce floral resources for pollinators, but little is known about its effects on floral attractiveness and how this might cascade to affect pollinators, pollination functions and plant fitness. We used an in situ long‐term drought experiment to investigate multiple impacts of reduced precipitation in a natural Mediterranean shrubland, a habitat where climate change is predicted to increase the frequency and intensity of droughts. Focusing on three insect‐pollinated plant species that provide abundant rewards and support a diversity of pollinators (Cistus albidus, Salvia rosmarinus and Thymus vulgaris), we investigated the effects of drought on a suite of floral traits including nectar production and floral scent. We also measured the impact of reduced rainfall on pollinator visits, fruit set and germination in S. rosmarinus and C. albidus. Drought altered floral emissions of all three plant species qualitatively, and reduced nectar production in T. vulgaris only. Apis mellifera and Bombus gr. terrestris visited more flowers in control plots than drought plots, while small wild bees visited more flowers in drought plots than control plots. Pollinator species richness did not differ significantly between treatments. Fruit set and seed set in S. rosmarinus and C. albidus did not differ significantly between control and drought plots, but seeds from drought plots had slower germination for S. rosmarinus and marginally lower germination success in C. albidus. Synthesis. Overall, we found limited but consistent impacts of a moderate experimental drought on floral phenotype, plant reproduction and pollinator visits. Increased aridity under climate change is predicted to be stronger than the level assessed in the present study. Drought impacts will likely be stronger and this could profoundly affect the structure and functioning of plant–pollinator networks in Mediterranean ecosystems. </jats:p
    corecore