17 research outputs found

    Five years of observations of ozone profiles over Lauder, New Zealand

    Get PDF
    Altitude profiles of ozone (O3) over Lauder (45°S, 170°E) performed using a lidar, ozonesondes, and the satellite-borne Stratospheric Aerosol and Gas Experiment (SAGE II) instrument are presented. These data form one of the few long-term sets of O3 profiles at a Southern Hemisphere location. In the 5 years of data presented, the dominant variation is the annual cycle, the phase and amplitude of which differ below and above 27.5 km. Superposed are irregular episodic variations, caused by various processes. The first process studied is stratosphere-troposphere exchange, characterized by dry and O3-rich air residing in the troposphere, which was found in 21% of the measurements. The second relates to the positioning of the higher polar vortex over Lauder, often in combination with the exchange of air between midlatitude and subtropical stratospheric regions. We present examples of this which were observed over Lauder during the 1997 winter. This winter was selected for further study because of the record-low O3 amounts measured. The third process is mixing of O3-depleted vortex air with midlatitude air after the vortex breakup. We present one example, which shows that a filament originating from the depleted Antarctic vortex significantly lowers O3 amounts over Lauder around 27 November 1997. There is thus a connection between Antarctic O3 depletion and later decrease of O3 amounts at a Southern Hemisphere midlatitude location, namely Lauder

    How Certain are We of the Uncertainties in Recent Ozone Profile Trend Assessments of Merged Limbo Ccultation Records? Challenges and Possible Ways Forward

    Get PDF
    Most recent assessments of long-term changes in the vertical distribution of ozone (by e.g. WMO and SI2N) rely on data sets that integrate observations by multiple instruments. Several merged satellite ozone profile records have been developed over the past few years; each considers a particular set of instruments and adopts a particular merging strategy. Their intercomparison by Tummon et al. revealed that the current merging schemes are not sufficiently refined to correct for all major differences between the limb/occultation records. This shortcoming introduces uncertainties that need to be known to obtain a sound interpretation of the different satellite-based trend studies. In practice however, producing realistic uncertainty estimates is an intricate task which depends on a sufficiently detailed understanding of the characteristics of each contributing data record and on the subsequent interplay and propagation of these through the merging scheme. Our presentation discusses these challenges in the context of limb/occultation ozone profile records, but they are equally relevant for other instruments and atmospheric measurements. We start by showing how the NDACC and GAW-affiliated ground-based networks of ozonesonde and lidar instruments allowed us to characterize fourteen limb/occultation ozone profile records, together providing a global view over the last three decades. Our prime focus will be on techniques to estimate long-term drift since our results suggest this is the main driver of the major trend differences between the merged data sets. The single-instrument drift estimates are then used for a tentative estimate of the systematic uncertainty in the profile trends from merged data records. We conclude by reflecting on possible further steps needed to improve the merging algorithms and to obtain a better characterization of the uncertainties involved

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Relative drifts and stability of satellite and ground-based stratospheric ozone profiles at NDACC lidar stations

    No full text
    The long-term evolution of stratospheric ozone at different stations in the low and mid-latitudes is investigated. The analysis is performed by comparing the collocated profiles of ozone lidars, at the northern mid-latitudes (Meteorological Observatory Hohenpeißenberg, Haute-Provence Observatory, Tsukuba and Table Mountain Facility), tropics (Mauna Loa Observatory) and southern mid-latitudes (Lauder), with ozonesondes and space-borne sensors (SBUV(/2), SAGE II, HALOE, UARS MLS and Aura MLS), extracted around the stations. Relative differences are calculated to find biases and temporal drifts in the measurements. All measurement techniques show their best agreement with respect to the lidar at 20-40 km, where the differences are within ±3% and drifts are less than ±0.3% yr−1 at all stations. In addition, the stability of the long-term ozone observations (lidar, SBUV(/2), SAGE II and HALOE) is evaluated by the cross-comparison of each data set. In general, all lidars and SBUV(/2) exhibit near zero drifts and the comparison between SAGE II and HALOE shows larger, but insignificant drifts. The RMS of the drifts of lidar and SBUV(/2) is 0.22 and 0.27% yr−1, respectively. The average drifts of the long-term data sets, derived from various comparisons, are less than ±0.3% yr−1 in 20-40 km at all stations. A combined time series of the relative differences between SAGE II, HALOE and Aura MLS with respect to lidar data at six sites is constructed, to obtain long-term data sets lasting up to 27 yr. The relative drifts derived from these combined data are very small, within ±0.2% yr−1

    Uncertainties in recent satellite ozone profile trend assessments (SI2N, WMO 2014) : A network-based assessment of fourteen contributing limb and occultation data records

    No full text
    International audienceNumerous vertical ozone profile data records collected over the past decades from space-based platforms have the potential to allow the ozone and climate communities to tackle a variety of research questions. A prime topic is the study and documentation of long-term changes in the vertical distribution of atmospheric ozone, as targeted by the recent SPARC/IO3C/IGACO-O3/NDACC Initiative (SI2N) and WMO’s ozone assessment. Such studies typically require data records with documented mutual consistency in terms of bias and long-term stability. Ground-based networks play a pivotal role in evaluating which satellite records comply with end-user requirements and are fit for their purpose. They provide high-quality, independent measurements on a pseudo- global scale from the ground up to the stratosphere.Here, we present an assessment of the long-term stability and mutual consistency of fourteen limb/occultation ozone profile data records, using NDACC/GAW/SHADOZ ozonesonde and NDACC lidar network data as reference standards. We show how a harmonized analysis framework and robust statistical methods allow us to derive reliable estimates of the drift, bias, and short-term variability of each satellite data record. We examine the dependence of these parameters on altitude and, whenever feasible, on latitude and season. The analysis is furthermore performed in four different ozone profile representations, as it turns out that auxiliary data used for unit and representation conversions can impact data quality. We discuss the mutual consistency and compliance of satellite data sets with respect to specific user requirements from GCOS and from climate research groups. We conclude by reflecting on the implication of our results for trend assessments on recently merged ozone profile records (Ozone_CCI, GOZCARDS, SWOOSH, ...

    On the Long-term Stability of Satellite and Ground-based Ozone Profile Records

    No full text
    International audienceIn recent years, many analyses of space- and ground-based data records reported signs or evidence of increasing ozone concentrations in the extrapolar upper stratosphere since the late 1990s. However, the magnitude and significance of the trend estimates vary from one study to another, prompting the ozone research community to further investigate the causes of these differences. A broader consensus has emerged in the past year, placing the positive trend in the upper stratosphere on solid ground and heralding the start of an observation-based exploration of the recovery of stratospheric ozone. More accurate trend estimates are needed to identify the geophysical processes contributing to the recovery and their relative importance. Uncovering seasonal and spatial trend patterns will be key in reaching this objective, not just in the extrapolar upper stratosphere but elsewhere as well.However, at the moment, it remains unclear whether current ozone profile observing systems are able to provide this information. We address this question with an exploration of the capabilities and limitations of current data records in space (limb/occultation sounders) and on the ground (NDACC/GAW/SHADOZ-affiliated sonde, stratospheric lidar and microwave radiometer sites) to infer decadal trends and their vertical, latitudinal and seasonal patterns. We focus on long-term stability, one of the key drivers of the ability to detect trends. We present updated results of a comprehensive analysis that allowed us to quantify the drift of satellite data relative to the ground-based networks (Hubert et al., 2016). In a companion analysis we exploited the satellite data to uncover temporal and spatial inhomogeneities in the ground-based time series, some of which were traced to known changes occurring at different moments across the network. These changes add to the challenge to derive unbiased ozone trends from ground-based observations and they impede our ability to constrain satellite drift to the level required for current and future ozone trend assessments. We conclude that ongoing efforts to homogenise the ground-based data records are essential

    Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model

    No full text
    The development and application of chemistry transport models has a long tradition. Within the Netherlands the LOTOS–EUROS model has been developed by a consortium of institutes, after combining its independently developed predecessors in 2005. Recently, version 2.0 of the model was released as an open-source version. This paper presents the curriculum vitae of the model system, describing the model's history, model philosophy, basic features and a validation with EMEP stations for the new benchmark year 2012, and presents cases with the model's most recent and key developments. By setting the model developments in context and providing an outlook for directions for further development, the paper goes beyond the common model description. With an origin in ozone and sulfur modelling for the models LOTOS and EUROS, the application areas were gradually extended with persistent organic pollutants, reactive nitrogen, and primary and secondary particulate matter. After the combination of the models to LOTOS–EUROS in 2005, the model was further developed to include new source parametrizations (e.g. road resuspension, desert dust, wildfires), applied for operational smog forecasts in the Netherlands and Europe, and has been used for emission scenarios, source apportionment, and long-term hindcast and climate change scenarios. LOTOS–EUROS has been a front-runner in data assimilation of ground-based and satellite observations and has participated in many model intercomparison studies. The model is no longer confined to applications over Europe but is also applied to other regions of the world, e.g. China. The increasing interaction with emission experts has also contributed to the improvement of the model's performance. The philosophy for model development has always been to use knowledge that is state of the art and proven, to keep a good balance in the level of detail of process description and accuracy of input and output, and to keep a good record on the effect of model changes using benchmarking and validation. The performance of v2.0 with respect to EMEP observations is good, with spatial correlations around 0.8 or higher for concentrations and wet deposition. Temporal correlations are around 0.5 or higher. Recent innovative applications include source apportionment and data assimilation, particle number modelling, and energy transition scenarios including corresponding land use changes as well as Saharan dust forecasting. Future developments would enable more flexibility with respect to model horizontal and vertical resolution and further detailing of model input data. This includes the use of different sources of land use characterization (roughness length and vegetation), detailing of emissions in space and time, and efficient coupling to meteorology from different meteorological models

    Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records

    Get PDF
    The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of 14 limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20 and 40 km the satellite ozone measurement biases are smaller than ±5 %, the short-term variabilities are less than 5–12 % and the drifts are at most ±5 %  per decade (or even ±3 % per  decade for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10 % and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY) and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses
    corecore