82 research outputs found

    Timing is everything - obtaining accurate measures of plant uptake of amino acids

    Get PDF
    Plants are known to have the capacity to take up and utilise amino acids for growth. The significance of this uptake, however, remains elusive, partly due to methodological challenges and biological implications associated with acquiring and interpreting data. This study compared bulk stable isotope analysis and compound-specific liquid chromatography-mass spectrometry, two established methods for determining amino acid uptake. Root amino acid uptake was assayed using U-C-13(5)-N-15(2)-l-glutamine and axenically grown Arabidopsis thaliana. After 15-120 min of exposure, the content of intact glutamine measured in the roots was constant, whilst the N-15 and C-13 content increased over time, resulting in very different estimated uptake rates. The C-13 : N-15 ratio in roots declined with time, suggesting a loss of glutamine carbon of up to 15% within 120 min. The results presented indicate that, regardless of method used, time is a crucial factor when determining plant amino acid uptake. Due to post-uptake metabolism, compound-specific methods should primarily be used in experiments with a time frame of minutes rather than hours or days. Post-uptake metabolism in plants may account for significant loss of carbon, suggesting that it is not just pre-uptake metabolism by microbes that accounts for the N-15-C-13 mismatch reported in ecological studies, but also post-uptake metabolism in the plant

    In planta function of compatible solute transporters of the AtProT family

    Get PDF
    The three proline transporters of Arabidopsis thaliana (AtProTs) transport the compatible solutes proline and glycine betaine and the stress-induced compound γ-aminobutyric acid when expressed in heterologous systems. The aim of the present study was to show transport and physiological relevance of these three AtProTs in planta. Using single, double, and triple knockout mutants and AtProT-overexpressing lines, proline content, growth on proline, transport of radiolabelled betaine, and expression of AtProT genes and enzymes of proline metabolism were analysed. AtProT2 was shown to facilitate uptake of L- and D-proline as well as [14C]glycine betaine in planta, indicating a role in the import of compatible solutes into the root. Toxic concentrations of L- and D-proline resulted in a drastic growth retardation of AtProT-overexpressing plants, demonstrating the need for a precise regulation of proline uptake and/or distribution. Furthermore evidence is provided that AtProT genes are highly expressed in tissues with elevated proline content—that is, pollen and leaf epidermis

    Genome Expression Profile Analysis of the Immature Maize Embryo during Dedifferentiation

    Get PDF
    Maize is one of the most important cereal crops worldwide and one of the primary targets of genetic manipulation, which provides an excellent way to promote its production. However, the obvious difference of the dedifferentiation frequency of immature maize embryo among various genotypes indicates that its genetic transformation is dependence on genotype and immature embryo-derived undifferentiated cells. To identify important genes and metabolic pathways involved in forming of embryo-derived embryonic calli, in this study, DGE (differential gene expression) analysis was performed on stages I, II, and III of maize inbred line 18-599R and corresponding control during the process of immature embryo dedifferentiation. A total of ∼21 million cDNA tags were sequenced, and 4,849,453, 5,076,030, 4,931,339, and 5,130,573 clean tags were obtained in the libraries of the samples and the control, respectively. In comparison with the control, 251, 324 and 313 differentially expressed genes (DEGs) were identified in the three stages with more than five folds, respectively. Interestingly, it is revealed that all the DEGs are related to metabolism, cellular process, and signaling and information storage and processing functions. Particularly, the genes involved in amino acid and carbohydrate transport and metabolism, cell wall/membrane/envelope biogenesis and signal transduction mechanism have been significantly changed during the dedifferentiation. To our best knowledge, this study is the first genome-wide effort to investigate the transcriptional changes in dedifferentiation immature maize embryos and the identified DEGs can serve as a basis for further functional characterization

    Patterns of Plant Biomass Partitioning Depend on Nitrogen Source

    Get PDF
    Nitrogen (N) availability is a strong determinant of plant biomass partitioning, but the role of different N sources in this process is unknown. Plants inhabiting low productivity ecosystems typically partition a large share of total biomass to belowground structures. In these systems, organic N may often dominate plant available N. With increasing productivity, plant biomass partitioning shifts to aboveground structures, along with a shift in available N to inorganic forms of N. We tested the hypothesis that the form of N taken up by plants is an important determinant of plant biomass partitioning by cultivating Arabidopsis thaliana on different N source mixtures. Plants grown on different N mixtures were similar in size, but those supplied with organic N displayed a significantly greater root fraction. 15N labelling suggested that, in this case, a larger share of absorbed organic N was retained in roots and split-root experiments suggested this may depend on a direct incorporation of absorbed amino acid N into roots. These results suggest the form of N acquired affects plant biomass partitioning and adds new information on the interaction between N and biomass partitioning in plants

    Feed Your Friends: Do Plant Exudates Shape the Root Microbiome?

    Get PDF
    Plant health in natural environments depends on interactions with complex and dynamic communities comprising macro- and microorganisms. While many studies have provided insights into the composition of rhizosphere microbiomes (rhizobiomes), little is known about whether plants shape their rhizobiomes. Here, we discuss physiological factors of plants that may govern plant-microbe interactions, focusing on root physiology and the role of root exudates. Given that only a few plant transport proteins are known to be involved in root metabolite export, we suggest novel families putatively involved in this process. Finally, building off of the features discussed in this review, and in analogy to well-known symbioses, we elaborate on a possible sequence of events governing rhizobiome assembly

    Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource

    Full text link

    Amino acid uptake in Arabidopsis

    Get PDF
    Nitrogen (N) is essential for all living organisms and is considered to be the limiting factor for plant growth in many ecosystems. Although generally believed to rely on mineral N to fulfill their N needs, plants have also been found to access organic N such as amino acids. Despite extensive research, the importance of amino acids as N sources for plants still remains unclear. The work presented in this thesis has focused on identifying the transporters responsible for amino acid uptake in plants and to characterize mutants lacking these transporters. Two transporters important for Arabidopsis thaliana amino acid uptake were identified, the lysine histidine transporter 1 (LHT1) and amino acid permease 5 (AAP5). These two transporters were found to have complementary, non-overlapping affinity spectra, i.e. LHT1 displayed affinity for neutral- and acidic amino acids and for L-Histidine, whereas AAP5 exhibited affinity for L-Arginine and L-Lysine only. Mutants lacking both LHT1 and AAP5 were found to have little residual uptake of the amino acids tested, suggesting these transporters to be the most important for Arabidopsis root amino acid uptake. Mutants lacking LHT1 or AAP5 displayed much reduced uptake rates in the low !M range suggesting these transporters mediate efficient uptake at field relevant concentrations. LHT1 mutants did not only have impaired uptake capacity, but also grew less than wild type when grown on for example L-Glutamine as the sole N source. In contrast, by over-expressing LHT1, plants grew larger on amino acids, suggesting a connection between uptake capacity and growth. Growth experiments using labeled amino acids in a mixture with nitrate revealed that a substantial amount of plant N was amino acid derived, suggesting that Arabidopsis has the ability to efficiently use amino acids as a source of N. The results presented in this thesis provide a mechanistic understanding to the process of root amino acid uptake in plants. This knowledge is important for future research within the field of plant organic N nutrition and Arabidopsis genotypes with altered amino acid uptake capacities can be used as tools to further elucidate the ecological benefit plants may have by taking up amino acids

    Nitrogen utilization during germination of somatic embryos of Norway spruce : revealing the importance of supplied glutamine for nitrogen metabolism

    No full text
    Key messageThis paper shows that germinating Norway spruce somatic embryos are dependent on the carbon and nitrogen supplied in the medium, and that supplied glutamine accounts for 50 % of assimilated nitrogen during germination.AbstractThe female megagametophyte, which provides the zygotic embryo with nitrogen (N), carbon (C) and energy during germination, is not present in Norway spruce (Picea abies) mature somatic embryos. Therefore, somatic embryos presumably rely on nutrients supplied in the germination medium in addition to their storage compounds accumulated during maturation. However, to what extent stored versus supplied compounds contribute to a somatic embryo germination is unclear. In this 24-day study, we addressed the above question by monitoring the biomass changes and the N and C budget during somatic embryo germination, under low-intensity red light. We found that the C and N storage reserves, accumulated during the maturation phase, were not sufficient to support the growth of the germinating somatic embryos, rather they were dependent on the medium components. In addition, in a previous study it has been found that glutamine (Gln) supplied in the medium was crucial for maintaining the primary amino acid (AA) metabolism and growth of the proliferating embryogenic cultures of Norway spruce (Carlsson et al., PLoS One 12(8):e0181785, 2017). Therefore, we hypothesised that Gln would be required as a significant source of N also during somatic embryo germination. By tracing the uptake of isotopically labelled N-sources from the medium and further into primary N assimilation, we found that Gln was the preferred source of N for the germinating somatic embryos, accounting for 50% of assimilated N. As the amounts of both arginine (Arg) and Gln were increased in the germinating somatic embryos, it also suggested that germination in low-intensity red light promoted N storage, similar to what has been observed in the zygotic embryo maturation in conifers (King, Gifford, Plant Physiol 113:1125-1135, 1997)
    corecore