55 research outputs found

    In vitro selection using a dual RNA library that allows primerless selection

    Get PDF
    High affinity target-binding aptamers are identified from random oligonucleotide libraries by an in vitro selection process called Systematic Evolution of Ligands by EXponential enrichment (SELEX). Since the SELEX process includes a PCR amplification step the randomized region of the oligonucleotide libraries need to be flanked by two fixed primer binding sequences. These primer binding sites are often difficult to truncate because they may be necessary to maintain the structure of the aptamer or may even be part of the target binding motif. We designed a novel type of RNA library that carries fixed sequences which constrain the oligonucleotides into a partly double-stranded structure, thereby minimizing the risk that the primer binding sequences become part of the target-binding motif. Moreover, the specific design of the library including the use of tandem RNA Polymerase promoters allows the selection of oligonucleotides without any primer binding sequences. The library was used to select aptamers to the mirror-image peptide of ghrelin. Ghrelin is a potent stimulator of growth-hormone release and food intake. After selection, the identified aptamer sequences were directly synthesized in their mirror-image configuration. The final 44 nt-Spiegelmer, named NOX-B11-3, blocks ghrelin action in a cell culture assay displaying an IC(50) of 4.5 nM at 37°C

    Ghrelin neutralization during fasting-refeeding cycle impairs the recuperation of body weight and alters hepatic energy metabolism

    Get PDF
    Ghrelin, a hormone whose levels increase during food deprivation, plays a pivotal role in the regulation of food intake, energy metabolism and storage, as well as in insulin sensitivity. Here, we investigated the effects of acyl-ghrelin neutralization with the acyl-ghrelin-binding compound NOX-B11(2) during the fasting-refeeding cycle. Our data demonstrate that ghrelin neutralization with NOX-B11(2) impairs recuperation of lost body weight after food deprivation. Analysis of enzymes involved in glucose and lipid metabolism in liver of fed, fasted and refed rats revealed that neutralization of acyl-ghrelin resulted in minor decreases in the enzymes of glycolytic and lipogenic pathways during fasting. However, during refeeding these enzymes as well as glycogen levels recovered more slowly when acyl-ghrelin was blocked. The high levels of ghrelin in response to food deprivation may contribute to an adequate decrease in hepatic glycolytic and lipogenic enzymes and aid in the recovery of body weight and energetic reserves once food becomes available after the fasting period

    Methods for L-ribooligonucleotide sequence determination using LCMS

    Get PDF
    The ability to verify the sequence of a nucleic acid-based therapeutic is an essential step in the drug development process. The challenge associated with sequence identification increases with the length and nuclease resistance of the nucleic acid molecule, the latter being an important attribute of therapeutic oligonucleotides. We describe methods for the sequence determination of Spiegelmers, which are enantiomers of naturally occurring RNA with high resistance to enzymatic degradation. Spiegelmer sequencing is effected by affixing a label or hapten to the 5â€Č-end of the oligonucleotide and chemically degrading the molecule in a controlled fashion to generate fragments that are then resolved and identified using liquid chromatography-mass spectrometry. The Spiegelmer sequence is then derived from these fragments. Examples are shown for two different Spiegelmers (NOX-E36 and NOX-A12), and the specificity of the method is shown using a NOX-E36 mismatch control

    GnRH Binding RNA and DNA Spiegelmers A Novel Approach toward GnRH Antagonism

    Get PDF
    AbstractMirror-image oligonucleotide ligands (Spiegelmers) that bind to the pharmacologically relevant target gonadotropin-releasing hormone I (GnRH) with high affinity and high specificity have been identified using the Spiegelmer technology. GnRH is a decapeptide that plays an important role in mammalian reproduction and sexual maturation and is associated with several benign and malignant diseases. First, aptamers that bind to D-GnRH with dissociation constants of 50–100 nM were isolated out of RNA and DNA libraries. The respective enantiomers of the DNA and RNA aptamers were synthesized, and their binding to L-GnRH was shown. These Spiegelmers bind to L-GnRH with similar affinity to that of the corresponding aptamers that bind to D-GnRH. We further demonstrated dose-dependent inhibition of GnRH-induced Ca2+ release in Chinese hamster ovary cells that were stably transfected with the human GnRH receptor

    Elasticity and Viscosity of DNA Liquid Crystals

    Get PDF
    Concentrated solutions of blunt-ended DNA oligomer duplexes self-assemble in living polymers and order into lyotropic nematic liquid crystal phase. Using the optical torque provided by three distinct illumination geometries, we induce independent splay, twist, and bend deformations of the DNA nematic and measure the corresponding elastic coefficient

    translation with d-amino acids

    Get PDF
    Key components of the translational apparatus, i.e. ribosomes, elongation factor EF-Tu and most aminoacyl-tRNA synthetases, are stereoselective and prevent incorporation of d-amino acids (d-aa) into polypeptides. The rare appearance of d-aa in natural polypeptides arises from post-translational modifications or non-ribosomal synthesis. We introduce an in vitro translation system that enables single incorporation of 17 out of 18 tested d-aa into a polypeptide; incorporation of two or three successive d-aa was also observed in several cases. The system consists of wild-type components and d-aa are introduced via artificially charged, unmodified tRNAGly that was selected according to the rules of ‘thermodynamic compensation’. The results reveal an unexpected plasticity of the ribosomal peptidyltransferase center and thus shed new light on the mechanism of chiral discrimination during translation. Furthermore, ribosomal incorporation of d-aa into polypeptides may greatly expand the armamentarium of in vitro translation towards the identification of peptides and proteins with new properties and functions

    2006. In vitro selection using a dual RNA library that allows primerless selection. Nucleic Acids Res 34:e86

    No full text
    ABSTRACT High affinity target-binding aptamers are identified from random oligonucleotide libraries by an in vitro selection process called Systematic Evolution of Ligands by EXponential enrichment (SELEX). Since the SELEX process includes a PCR amplification step the randomized region of the oligonucleotide libraries need to be flanked by two fixed primer binding sequences. These primer binding sites are often difficult to truncate because they may be necessary to maintain the structure of the aptamer or may even be part of the target binding motif. We designed a novel type of RNA library that carries fixed sequences which constrain the oligonucleotides into a partly double-stranded structure, thereby minimizing the risk that the primer binding sequences become part of the target-binding motif. Moreover, the specific design of the library including the use of tandem RNA Polymerase promoters allows the selection of oligonucleotides without any primer binding sequences. The library was used to select aptamers to the mirror-image peptide of ghrelin. Ghrelin is a potent stimulator of growth-hormone release and food intake. After selection, the identified aptamer sequences were directly synthesized in their mirrorimage configuration. The final 44 nt-Spiegelmer, named NOX-B11-3, blocks ghrelin action in a cell culture assay displaying an IC 50 of 4.5 nM at 37 C
    • 

    corecore