68 research outputs found

    Germline ATM Mutations Detected by Somatic DNA Sequencing in Lethal Prostate Cancer

    Get PDF
    DNA damage response; PARP inhibition; Prostate cancerRespuesta al daño del ADN; Inhibición de PARP; Cáncer de próstataResposta al dany de l'ADN; Inhibició de PARP; Càncer de pròstataBackground Germline mutations in the ataxia telangiectasia mutated (ATM) gene occur in 0.5–1% of the overall population and are associated with tumour predisposition. The clinical and pathological features of ATM-mutated prostate cancer (PC) are poorly defined but have been associated with lethal PC. Objective To report on the clinical characteristics including family history and clinical outcomes of a cohort of patients with advanced metastatic castration-resistant PC (CRPC) who were found to have germline ATM mutations after mutation detection by initial tumour DNA sequencing. Design, setting, and participants We acquired germline ATM mutation data by saliva next-generation sequencing from patients with ATM mutations in PC biopsies sequenced between January 2014 and January 2022. Demographics, family history, and clinical data were collected retrospectively. Outcome measurements and statistical analysis Outcome endpoints were based on overall survival (OS) and time from diagnosis to CRPC. Data were analysed using R version 3.6.2 (R Foundation for Statistical Computing, Vienna, Austria). Results and limitations Overall, seven patients (n = 7/1217; 0.6%) had germline ATM mutations detected, with five of them having a family history of malignancies, including breast, prostate, pancreas, and gastric cancer; leukaemia; and lymphoma. Two patients had concomitant somatic mutations in tumour biopsies in genes other than ATM, while two patients were found to carry more than one ATM pathogenic mutation. Five tumours in germline ATM variant carriers had loss of ATM by immunohistochemistry. The median OS from diagnosis was 7.1 yr (range 2.9–14 yr) and the median OS from CRPC was 5.3 yr (range 2.2–7.3 yr). When comparing these data with PC patients sequenced by The Cancer Genome Atlas, we found that the spatial localisation of mutations was similar, with distribution of alterations occurring on similar positions in the ATM gene. Interestingly, these include a mutation within the FRAP-ATM-TRRAP (FAT) domain, suggesting that this represents a mutational hotspot for ATM. Conclusions Germline ATM mutations are rare in patients with lethal PC but occur at mutational hotspots; further research is warranted to better characterise the family histories of these men and PC clinical course

    DNA damage-induced interaction between a lineage addiction oncogenic transcription factor and the MRN complex shapes a tissue-specific DNA Damage Response and cancer predisposition

    Get PDF
    Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA Damage Response (DDR) programs. However, some cells, in skin for example, are normally exposed to high levels of DNA damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Here we show, using melanoma as a model, that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a non-transcriptional role in shaping the DDR. On exposure to DNA damaging agents, MITF is phosphorylated by ATM/DNA-PKcs, and unexpectedly its interactome is dramatically remodelled; most transcription (co)factors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks, and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement, high MITF levels are associated with increased SNV burden in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of ATM/DNA-PKcs-phosphorylated MITF. Our data suggest that a non-transcriptional function of a lineage-restricted transcription factor contributes to a tissue-specialised modulation of the DDR that can impact cancer initiation

    Clinical Utility of Circulating Tumour Cell Androgen Receptor Splice Variant-7 Status in Metastatic Castration-resistant Prostate Cancer.

    Get PDF
    Abstract Background Detection of androgen receptor splice variant-7 (AR-V7) mRNA in circulating tumour cells (CTCs) is associated with worse outcome in metastatic castration-resistant prostate cancer (mCRPC). However, studies rarely report comparisons with CTC counts and biopsy AR-V7 protein expression. Objective To determine the reproducibility of AdnaTest CTC AR-V7 testing, and associations with clinical characteristics, CellSearch CTC counts, tumour biopsy AR-V7 protein expression and overall survival (OS). Design, setting, and participants CTC AR-V7 status was determined for 227 peripheral blood samples, from 181 mCRPC patients with CTC counts (202 samples; 136 patients) and matched mCRPC biopsies (65 samples; 58 patients). Outcome measurements and statistical analysis CTC AR-V7 status was associated with clinical characteristics, CTC counts, and tissue biopsy AR-V7 protein expression. The association of CTC AR-V7 status and other baseline variables with OS was determined. Results and limitations Of the samples, 35% were CTC+/AR-V7+. CTC+/AR-V7+ samples had higher CellSearch CTC counts (median CTC; interquartile range [IQR]: 60, 19–184 vs 9, 2–64; Mann-Whitney test p Conclusions Studies reporting the prognostic relevance of CTC AR-V7 status must account for CTC counts. Discordant CTC AR-V7 results and AR-V7 protein expression in matched, same-patient biopsies are reported. Patient summary Liquid biopsies that determine circulating tumour cell androgen receptor splice variant-7 status have the potential to impact treatment decisions in metastatic castration-resistant prostate cancer patients. Robust clinical qualification of these assays is required before their routine use

    Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer

    Get PDF
    Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkbl alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1(K781), was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination

    Gene-level association analysis of systemic sclerosis: A comparison of African-Americans and White populations

    Get PDF
    All authors: Olga Y. Gorlova , Yafang Li, Ivan Gorlov, Jun Ying, Wei V. Chen, Shervin Assassi, John D. Reveille, Frank C. Arnett, Xiaodong Zhou, Lara Bossini-Castillo, Elena Lopez-Isac, Marialbert Acosta-Herrera, Peter K. Gregersen, Annette T. Lee, Virginia D. Steen, Barri J. Fessler, Dinesh Khanna, Elena Schiopu, Richard M. Silver, Jerry A. Molitor, Daniel E. Furst, Suzanne Kafaja, Robert W. Simms, Robert A. Lafyatis, Patricia Carreira, Carmen Pilar Simeon, Ivan Castellvi, Emma Beltran, Norberto Ortego, Christopher I. Amos, Javier Martin, Maureen D. Mayes.Data Availability Statement: Genetic data is available from dbGaP repository (https://www.ncbi. nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_ id=phs000357.v1.p1).Gene-level analysis of ImmunoChip or genome-wide association studies (GWAS) data has not been previously reported for systemic sclerosis (SSc, scleroderma). The objective of this study was to analyze genetic susceptibility loci in SSc at the gene level and to determine if the detected associations were shared in African-American and White populations, using data from ImmunoChip and GWAS genotyping studies. The White sample included 1833 cases and 3466 controls (956 cases and 2741 controls from the US and 877 cases and 725 controls from Spain) and the African American sample, 291 cases and 260 controls. In both Whites and African Americans, we performed a gene-level analysis that integrates association statistics in a gene possibly harboring multiple SNPs with weak effect on disease risk, using Versatile Gene-based Association Study (VEGAS) software. The SNP-level analysis was performed using PLINK v.1.07. We identified 4 novel candidate genes (STAT1, FCGR2C, NIPSNAP3B, and SCT) significantly associated and 4 genes (SERBP1, PINX1, TMEM175 and EXOC2) suggestively associated with SSc in the gene level analysis in White patients. As an exploratory analysis we compared the results on Whites with those from African Americans. Of previously established susceptibility genes identified in Whites, only TNFAIP3 was significant at the nominal level (p = 6.13x10-3) in African Americans in the gene-level analysis of the ImmunoChip data. Among the top suggestive novel genes identified in Whites based on the ImmunoChip data, FCGR2C and PINX1 were only nominally significant in African Americans (p = 0.016 and p = 0.028, respectively), while among the top novel genes identified in the gene-level analysis in African Americans, UNC5C (p = 5.57x10-4) and CLEC16A (p = 0.0463) were also nominally significant in Whites. We also present the gene-level analysis of SSc clinical and autoantibody phenotypes among Whites. Our findings need to be validated by independent studies, particularly due to the limited sample size of African Americans.Funding was provided to MDM by the National Institutes of Health (NIH) the National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS https://www.niams.nih.gov/) Centers of Research Translation (CORT) P50-AR054144, NIH grant N01-AR-02251 and R01-AR-055258, and the Department of Defense (DD) Congressionally Directed Medical Research Program (http://cdmrp.army.mil/) W81XWH-07-1-011 and WX81XWH-13-1-0452 for the collection, analysis and interpretation of the data

    Validation of the Body Concealment Scale for Scleroderma (BCSS): Replication in the Scleroderma Patient-centered Intervention Network (SPIN) Cohort

    Get PDF
    © 2016 Elsevier Ltd Body concealment is an important component of appearance distress for individuals with disfiguring conditions, including scleroderma. The objective was to replicate the validation study of the Body Concealment Scale for Scleroderma (BCSS) among 897 scleroderma patients. The factor structure of the BCSS was evaluated using confirmatory factor analysis and the Multiple-Indicator Multiple-Cause model examined differential item functioning of SWAP items for sex and age. Internal consistency reliability was assessed via Cronbach's alpha. Construct validity was assessed by comparing the BCSS with a measure of body image distress and measures of mental health and pain intensity. Results replicated the original validation study, where a bifactor model provided the best fit. The BCSS demonstrated strong internal consistency reliability and construct validity. Findings further support the BCSS as a valid measure of body concealment in scleroderma and provide new evidence that scores can be compared and combined across sexes and ages

    The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced Tyrosinase expression

    No full text
    The stress-activated signalling cascade leading to phosphorylation of the p38 family of kinases plays a crucial role during development and in the cellular response to a wide variety of stress-inducing agents. Although alterations in gene expression characteristic of the stress response require the regulation of key transcription factors by the p38 family, few downstream targets for this signalling pathway have been identified. By examining the ability of pigment cells to respond to UV irradiation as part of the UV-induced tanning response, we show that while the microphthalmia-associated transcription factor Mitf regulates basal Tyrosinase expression, it is the ubiquitous basic helix–loop–helix-leucine zipper transcription factor Usf-1 that is required for the UV activation of the Tyrosinase promoter. Consistent with this we demonstrate that Usf-1 is phosphorylated and activated by the stress-responsive p38 kinase. The results suggest that activation of Usf-1 by p38 at a wide variety of viral and cellular promoters will provide a link between stimuli as diverse as UV irradiation, glucose, viral infection and pro-inflammatory cytokines, and the changes in gene expression associated with the stress response

    Tbx2 Directly Represses the Expression of the p21 WAF1

    No full text
    • …
    corecore