16 research outputs found

    Thermodynamic Predictions of Hydrogen Generation during the Serpentinization of Harzburgite with Seawater-derived Brines

    Get PDF
    Salty aqueous solutions (brines) occur on Earth and may be prevalent elsewhere. Serpentinization represents a family of geochemical reactions where the hydration of olivine-rich rocks can release aqueous hydrogen, H2(aq), as a byproduct, and hydrogen is a known basal electron donor for terrestrial biology. While the effects of lithological differences on serpentinization products have been thoroughly investigated, effects focusing on compositional differences of the reacting fluid have received less attention. In this contribution, we investigate how the chemistry of seawater-derived brines affects the generation of biologically available hydrogen resulting from the serpentinization of harzburgite. We numerically investigate the serpentinization of ultramafic rocks at equilibrium with an array of brines at different water activities (a proxy for salt concentration in aqueous fluids and a determinant for habitability) derived from seawater evaporation. Because the existing supersaturation of aqueous calcium carbonate, a contributor to dissolved inorganic carbon (DIC) in natural seawater, cannot be captured in equilibrium calculations, we bookend our calculations by enabling and suppressing carbonate minerals when simulating serpentinization. We find that the extent of DIC supersaturation can provide an important control of hydrogen availability. Increased DIC becomes a major sink for hydrogen by producing formate and associated complexes when the reacting fluids are acidic enough to allow for CO2. Indeed, H2(aq) reduces CO2(aq) to formate, leading to a hydrogen deficit. These conclusions provide additional insights into the habitability of brine systems, given their potential for serpentinization across diverse planetary bodies such as on Mars and ocean worlds

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    Laboratory astrophysics experiments studying hydrodynamic and magnetically-driven plasma jets

    No full text
    International audienceLaboratory astrophysics is a novel approach to study different types of astrophysical phenomena by the means of carefully scaled laboratory experiments. Particularly, the formation of highly supersonic, radiatively cooled plasma jets for the study of protostellar jets is an active area of research at present. At Imperial College London, different experimental configurations allow producing plasma flows which are scalable to protostellar jets. The plasma is produced by introducing a ~1.4 MA, 250 ns current pulse from the MAGPIE generator into a load. By varying the geometry of the load it is possible to study different regions of interest in the jet. For instance, the effect of magnetic fields in the launching and collimation of the jet, and the propagation of the jet far away from the launching region as it interacts with the ambient medium. Two main experiments can address such regions of interest: radial wire arrays and radial foils. By using a radial wire array it is possible to produce a jet driven by a predominant toroidal magnetic field on the axis of a magnetic "bubble", which expands with velocities up to ~300 km/s. In a radial foil the wires are replaced by a continuous disk allowing to produce a hydrodynamic jet, i.e. a jet in which magnetic fields are not dynamically significant. With this particular configuration it is possible to introduce a neutral gas above the foil in order to study jet-ambient interactions. Experimental results from different diagnostics will be presented together with 3-D MHD simulations using the GORGON code

    IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses

    No full text
    Viruses represent the most abundant life forms on the planet. Recent experimental and computational improvements have led to a dramatic increase in the number of viral genome sequences identified primarily from metagenomic samples. As a result of the expanding catalog of metagenomic viral sequences, there exists a need for a comprehensive computational platform integrating all these sequences with associated metadata and analytical tools. Here we present IMG/VR (https://img.jgi.doe.gov/vr/), the largest publicly available database of 3908 isolate reference DNA viruses with 264 413 computationally identified viral contigs from >6000 ecologically diverse metagenomic samples. Approximately half of the viral contigs are grouped into genetically distinct quasi-species clusters. Microbial hosts are predicted for 20 000 viral sequences, revealing nine microbial phyla previously unreported to be infected by viruses. Viral sequences can be queried using a variety of associated metadata, including habitat type and geographic location of the samples, or taxonomic classification according to hallmark viral genes. IMG/VR has a user-friendly interface that allows users to interrogate all integrated data and interact by comparing with external sequences, thus serving as an essential resource in the viral genomics community

    The Winchcombe meteorite, a unique and pristine witness from the outer solar system

    No full text
    Direct links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid. Recovered only hours after falling, the composition of the Winchcombe meteorite is largely unmodified by the terrestrial environment. It contains abundant hydrated silicates formed during fluid-rock reactions, and carbon- and nitrogen-bearing organic matter including soluble protein amino acids. The near-pristine hydrogen isotopic composition of the Winchcombe meteorite is comparable to the terrestrial hydrosphere, providing further evidence that volatile-rich carbonaceous asteroids played an important role in the origin of Earth’s water.Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). The linked file is the published version of the article.NHM Repositor

    The Winchcombe meteorite, a unique and pristine witness from the outer solar system.

    Get PDF
    Direct links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid. Recovered only hours after falling, the composition of the Winchcombe meteorite is largely unmodified by the terrestrial environment. It contains abundant hydrated silicates formed during fluid-rock reactions, and carbon- and nitrogen-bearing organic matter including soluble protein amino acids. The near-pristine hydrogen isotopic composition of the Winchcombe meteorite is comparable to the terrestrial hydrosphere, providing further evidence that volatile-rich carbonaceous asteroids played an important role in the origin of Earth's water
    corecore