81 research outputs found
Functional Foods: Potential Activity For Controlling Heart Disease
In modern communities, functional foods are very much acceptable to health-conscious people. Functional foods are considered healthy foods. Chronic diseases like Heart-related issues develop due to the intake of excessive quantities of fat, refined sugar, salt, and cholesterol-rich foods. However functional foods are involved to facilitate heart distress. Intake of active food ingredients like micronutrients (vitamins and minerals), dietary fibre, antioxidants, and probiotic foods improve cardiovascular disorder therefore upgrading physical and mental well-being. Authors have demonstrated that aged people suffer chronic distress in general therefore it can be prevented by functional foods. functional foods are more relevant than synthetic drugs or pharmaceuticals. So, heart-related issues are torn down by the consumption of functional foods in adequate quantity. Functional foods which have good quantity of bioactive compounds, nutraceutical attributes these are fruits and vegetables, green tea, turmeric, onion, spirulina, soyabean, oats and barley, probiotics and prebiotics, extra virgin olive oil and so on, have capability to mitigate intricate difficulties of cardiovascular disease. Precisely, the motive of this review is the advantageous effect of functional foods in preventing the manifestations of heart disorders around the globe. This review article highlights functional foods' potential activity to control heart disorders
Enhancing Orthodontic Pain Management: A vision for Improved Patient Comfort
Pain is a common concern in orthodontic treatment, resulting from inflammatory responses triggered by force application. This review explores the characteristics, mechanisms, causes, and management strategies for orthodontic pain. Patient-specific factors, including age, gender, and anxiety, contribute to pain perception. Pain typically peaks shortly after orthodontic procedures and diminishes gradually. Orthodontic Pain management encompasses pharmacological interventions (NSAIDs, analgesics), mechanical methods (chewing gum, laser therapy), and behavioral approaches (CBT, physical activity). Modifications in orthodontic procedures, such as using Ni-Ti wires and alternatives to traditional appliances, have been introduced to alleviate pain. These advances have transformed the orthodontic experience, making it more tolerable and enhancing treatment outcomes. Overall, this review provides insights into orthodontic pain and its management, benefiting both patients and practitioners in achieving successful orthodontic treatmen
Hydroxylation of N-acetylneuraminic Acid Influences the in vivo Tropism of N-linked Sialic Acid-Binding Adeno-Associated Viruses AAV1, AAV5, and AAV6
Adeno-associated virus (AAV) vectors are promising candidates for gene therapy. However, a number of recent preclinical large animal studies failed to translate into the clinic. This illustrates the formidable challenge of choosing the animal models that promise the best chance of a successful translation into the clinic. Several of the most common AAV serotypes use sialic acid (SIA) as their primary receptor. However, in contrast to most mammals, humans lack the enzyme CMAH, which hydroxylates cytidine monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac) into cytidine monophosphate-N-glycolylneuraminic acid (CMP-Neu5Gc). As a result, human glycans only contain Neu5Ac and not Neu5Gc. Here, we investigate the tropism of AAV1, 5, 6 and 9 in wild-type C57BL/6J (WT) and CMAH knock-out (CMAH−/−) mice. All N-linked SIA-binding serotypes (AAV1, 5 and 6) showed significantly lower transduction of the heart in CMAH−/− when compared to WT mice (5–5.8-fold) and, strikingly, skeletal muscle transduction by AAV5 was almost 30-fold higher in CMAH−/− compared to WT mice. Importantly, the AAV tropism or distribution of expression among different organs was also affected. For AAV1, AAV5 and AAV6, expression in the heart compared to the liver was 4.6–8-fold higher in WT than in CMAH−/− mice, and for AAV5 the expression in the heart compared to the skeletal muscle was 57.3-fold higher in WT than in CMAH−/− mice. These data thus strongly suggest that the relative abundance of Neu5Ac and Neu5Gc plays a role in AAV tropism, and that results obtained in commonly used animal models might not translate into the clinic.Fil: Lopez Gordo, Estrella. Icahn School of Medicine ; Estados UnidosFil: Orlowski, Alejandro. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; Argentina. Icahn School of Medicine ; Estados UnidosFil: Wang, Arthur. Icahn School of Medicine ; Estados UnidosFil: Weinberg, Alan. Icahn School of Medicine ; Estados UnidosFil: Sahoo, Susmita. Icahn School of Medicine ; Estados UnidosFil: Weber, Thomas. Icahn School of Medicine ; Estados Unido
Potential Biomarkers for Therapeutic Monitoring and Clinical Outcome in Breast Cancer
Non-coding RNAs are a species of RNA that are not translated to proteins. These include transfer RNAs and ribosomal RNAs, microRNAs, transfer RNA-derived fragments, and long non-coding RNA. It is known that expression levels of some non-coding RNAs included microRNAs are altered in cancer cells or tumor tissues. Moreover, expression profiles of such non-coding RNAs correlate between tissues and body fluids. Therefore, several non-coding RNAs are being used as diagnostic/prognosis biomarkers or therapeutic targets in cancer. In this chapter, we review about representative non-coding RNAs and introduce especially microRNA as diagnosis/prognosis biomarkers and therapeutic targets
Biochemical Characterization of High Mercury Tolerance in a Pseudomonas Spp. Isolated from Industrial Effluent
A mercury resistant Pseudomonas spp. was isolated from industrial effluent that was able to tolerate 200 µM HgCl2. The Hg2+-resistant Pseudomonas spp. exhibited elevated stress-regulatory mechanisms as indicated by its high and inducible mercury reductase activity, high intrinsic catalase activity and enhanced resistance to Hg2+-induced release of protein-bound iron. An enhanced resistance of the bacterium to Hg2+-induced lipid peroxidation was observed as indicated by 40% lower conjugated diene and 60% lower lipid hydroperoxide content compared to a non-mercury resistant strain Pseudomonas aeruginosa (ATCC 27853). Phospholipid (PL) analysis of both the species reveled intrinsic differences in their PL composition. We observed 80% PE, 15% PG and 5% of an unidentified PL (U) in MRP compared to 65% PE, 20% PG and 17% CL in Pseudomonas aeruginosa (ATCC 27853). Mercury toxicity led to significant reorganization of PL in Pseudomonas aeruginosa (ATCC 27853) compared to MRP. While HgCl2 led to 25% increase in PE, 35% depletion in CL and 27% depletion in PG content of Pseudomonas aeruginosa (ATCC 27853), MRP exhibited only 5% enhancement in PE content that was accompanied by 20% depletion in PG content, indicating that MRP resists mercury induced PL organization. Interaction of the MRP with polystyrene surface showed two fold higher Hg2+-induced exopolysaccharide secretion and elevated biofilm forming ability compared to Pseudomonas aeruginosa (ATCC 27853). Our investigation reveals a novel Pseudomonas spp. with high Hg2+-tolerance mechanisms that can be utilized for efficient bioremediation of mercury
Induction of Autophagy by Cystatin C: A Mechanism That Protects Murine Primary Cortical Neurons and Neuronal Cell Lines
Cystatin C (CysC) expression in the brain is elevated in human patients with epilepsy, in animal models of neurodegenerative conditions, and in response to injury, but whether up-regulated CysC expression is a manifestation of neurodegeneration or a cellular repair response is not understood. This study demonstrates that human CysC is neuroprotective in cultures exposed to cytotoxic challenges, including nutritional-deprivation, colchicine, staurosporine, and oxidative stress. While CysC is a cysteine protease inhibitor, cathepsin B inhibition was not required for the neuroprotective action of CysC. Cells responded to CysC by inducing fully functional autophagy via the mTOR pathway, leading to enhanced proteolytic clearance of autophagy substrates by lysosomes. Neuroprotective effects of CysC were prevented by inhibiting autophagy with beclin 1 siRNA or 3-methyladenine. Our findings show that CysC plays a protective role under conditions of neuronal challenge by inducing autophagy via mTOR inhibition and are consistent with CysC being neuroprotective in neurodegenerative diseases. Thus, modulation of CysC expression has therapeutic implications for stroke, Alzheimer's disease, and other neurodegenerative disorders
Towards mechanisms and standardization in extracellular vesicle and extracellular RNA studies: results of a worldwide survey
The discovery that extracellular vesicles (EVs) can transfer functional extracellular RNAs (exRNAs) between cells opened new avenues into the study of EVs in health and disease. Growing interest in EV RNAs and other forms of exRNA has given rise to research programmes including but not limited to the Extracellular RNA Communication Consortium (ERCC) of the US National Institutes of Health. In 2017, the International Society for Extracellular Vesicles (ISEV) administered a survey focusing on EVs and exRNA to canvass-related views and perceived needs of the EV research community. Here, we report the results of this survey. Overall, respondents emphasized opportunities for technical developments, unraveling of molecular mechanisms and standardization of methodologies to increase understanding of the important roles of exRNAs in the broader context of EV science. In conclusion, although exRNA biology is a relatively recent emphasis in the EV field, it has driven considerable interest and resource commitment. The ISEV community looks forward to continuing developments in the science of exRNA and EVs, but without excluding other important molecular constituents of EVs
Updating MISEV: evolving the minimal requirements for studies of extracellular vesicles
The minimal information for studies of extracellular vesicles (EVs, MISEV) is a field-consensus rigour initiative of the International Society for Extracellular Vesicles (ISEV). The last update to MISEV, MISEV2018, was informed by input from more than 400 scientists and made recommendations in the six broad topics of EV nomenclature, sample collection and pre-processing, EV separation and concentration, characterization, functional studies, and reporting requirements/exceptions. To gather opinions on MISEV and ideas for new updates, the ISEV Board of Directors canvassed previous MISEV authors and society members. Here, we share conclusions that are relevant to the ongoing evolution of the MISEV initiative and other ISEV rigour and standardization efforts
Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop
Paracrine and endocrine roles have increasingly been ascribed to extracellular vesicles (EVs) generated by multicellular organisms. Central to the biogenesis, content, and function of EVs are their delimiting lipid bilayer membranes. To evaluate research progress on membranes and EVs, the International Society for Extracellular Vesicles (ISEV) conducted a workshop in March 2018 in Baltimore, Maryland, USA, bringing together key opinion leaders and hands-on researchers who were selected on the basis of submitted applications. The workshop was accompanied by two scientific surveys and covered four broad topics: EV biogenesis and release; EV uptake and fusion; technologies and strategies used to study EV membranes; and EV transfer and functional assays. In this ISEV position paper, we synthesize the results of the workshop and the related surveys to outline important outstanding questions about EV membranes and describe areas of consensus. The workshop discussions and survey responses reveal that while much progress has been made in the field, there are still several concepts that divide opinion. Good consensus exists in some areas, including particular aspects of EV biogenesis, uptake and downstream signalling. Areas with little to no consensus include EV storage and stability, as well as whether and how EVs fuse with target cells. Further research is needed in these key areas, as a better understanding of membrane biology will contribute substantially towards advancing the field of extracellular vesicles.Fil: Russell, Ashley E.. University Johns Hopkins; Estados UnidosFil: Sneider, Alexandra. University Johns Hopkins; Estados UnidosFil: Witwer, Kenneth W.. University Johns Hopkins; Estados UnidosFil: Bergese, Paolo. Università Degli Studi Di Brescia; ItaliaFil: Bhattacharyya, Suvendra N.. Indian Institute of Chemical Biology; IndiaFil: Cocks, Alexander. Cardiff University; Reino UnidoFil: Cocucci, Emanuele. Ohio State University; Estados UnidosFil: Erdbrügger, Uta. University of Virginia; Estados UnidosFil: Falcon Perez, Juan M.. Ikerbasque Basque Foundation for Science; EspañaFil: Freeman, David W.. National Institute On Aging National Institute for Helth ; Estados UnidosFil: Gallagher, Thomas M.. Loyola University Of Chicago; Estados UnidosFil: Hu, Shuaishuai. Technological University Dublin; IrlandaFil: Huang, Yiyao. University Johns Hopkins; Estados Unidos. Southern Medical University; ChinaFil: Jay, Steven M.. University of Maryland; Estados UnidosFil: Kano, Shin-ichi. The University of Alabama at Birmingham School of Medicine; Estados UnidosFil: Lavieu, Gregory. Institut Curie; FranciaFil: Leszczynska, Aleksandra. University of California at San Diego; Estados UnidosFil: Llorente, Alicia M.. Oslo University Hospital; NoruegaFil: Lu, Quan. Harvard University. Harvard School of Public Health; Estados UnidosFil: Mahairaki, Vasiliki. University Johns Hopkins; Estados UnidosFil: Muth, Dillon C.. University Johns Hopkins; Estados UnidosFil: Noren Hooten, Nicole. National Institute On Aging National Institute for Helth ; Estados UnidosFil: Ostrowski, Matias. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Prada, Ilaria. Consiglio Nazionale delle Ricerche; ItaliaFil: Sahoo, Susmita. Icahn School of Medicine at Mount Sinai ; Estados UnidosFil: Schøyen, Tine Hiorth. Uit The Arctic University Of Norway; Noruega. University Johns Hopkins; Estados UnidosFil: Sheng, Lifuy. University of Washington. School of Medicine; Estados UnidosFil: Tesch, Deanna. Shaw University; Estados UnidosFil: Van Niel, Guillaume. No especifÃca;Fil: Vandenbroucke, Roosmarijn E.. University of Ghent; BélgicaFil: Verweij, Frederik J.. No especifÃca;Fil: Villar, Ana V.. Universidad de Cantabria; EspañaFil: Wauben, Marca. University of Utrecht; PaÃses BajosFil: Wehman, Ann M.. Universität Würzburg; AlemaniaFil: Ardavan, Arzhang. Peking University; ; ChinaFil: Carter, David Raul Francisco. Oxford Brookes University; Reino UnidoFil: Vader, Pieter. University Medical Center Utrecht; PaÃses Bajo
- …