15 research outputs found

    Regulation of LFA-1-dependent inflammatory cell recruitment by Cb1-b and 14-3-3 proteins

    No full text
    Inside-out signaling regulation of the β2-integrin leukocyte function–associated antigen-1 (LFA-1) by different cytoplasmic proteins, including 14-3-3 proteins, is essential for adhesion and migration of immune cells. Here, we identify a new pathway for the regulation of LFA-1 activity by Cbl-b, an adapter molecule and ubiquitin ligase that modulates several signaling pathways. Cbl-b−/− mice displayed increased macrophage recruitment in thioglycollate-induced peritonitis, which was attributed to Cbl-b deficiency in macrophages, as assessed by bone marrow chimera experiments. In vitro, Cbl-b−/− bone marrow–derived mononuclear phagocytes (BMDMs) displayed increased adhesion to endothelial cells. Activation of LFA-1 in Cbl-b–deficient cells was responsible for their increased endothelial adhesion in vitro and peritoneal recruitment in vivo, as the phenotype of Cbl-b deficiency was reversed in Cbl-b−/−LFA-1−/− mice. Consistently, LFA-1–mediated adhesion of BMDM to ICAM-1 but not VLA-4–mediated adhesion to VCAM-1 was enhanced by Cbl-b deficiency. Cbl-b deficiency resulted in increased phosphorylation of T758 in the β2-chain of LFA-1 and thereby in enhanced association of 14-3-3β protein with the β2-chain, leading to activation of LFA-1. Consistently, disruption of the 14-3-3/β2-integrin interaction abrogated the enhanced ICAM-1 adhesion of Cbl-b−/− BMDMs. In conclusion, Cbl-b deficiency activates LFA-1 and LFA-1–mediated inflammatory cell recruitment by stimulating the interaction between the LFA-1 β-chain and 14-3-3 proteins

    Transendothelial migration of lymphocytes mediated by intraendothelial vesicle stores rather than by extracellular chemokine depots

    No full text
    Chemokines presented by the endothelium are critical for integrin-dependent adhesion and transendothelial migration of naive and memory lymphocytes. Here we found that effector lymphocytes of the type 1 helper T cell (T(H)1 cell) and type 1 cytotoxic T cell (T(C)1 cell) subtypes expressed adhesive integrins that bypassed chemokine signals and established firm arrests on variably inflamed endothelial barriers. Nevertheless, the transendothelial migration of these lymphocytes strictly depended on signals from guanine nucleotide-binding proteins of the G(i) type and was promoted by multiple endothelium-derived inflammatory chemokines, even without outer endothelial surface exposure. Instead, transendothelial migration-promoting endothelial chemokines were stored in vesicles docked on actin fibers beneath the plasma membranes and were locally released within tight lymphocyte-endothelial synapses. Thus, effector T lymphocytes can cross inflamed barriers through contact-guided consumption of intraendothelial chemokines without surface-deposited chemokines or extraendothelial chemokine gradients

    Characterization of nucleic acids from extracellular vesicle-enriched human sweat

    Get PDF
    Abstract Background: The human sweat is a mixture of secretions from three types of glands: eccrine, apocrine, and sebaceous. Eccrine glands open directly on the skin surface and produce high amounts of water-based fluid in response to heat, emotion, and physical activity, whereas the other glands produce oily fluids and waxy sebum. While most body fluids have been shown to contain nucleic acids, both as ribonucleoprotein complexes and associated with extracellular vesicles (EVs), these have not been investigated in sweat. In this study we aimed to explore and characterize the nucleic acids associated with sweat particles. Results: We used next generation sequencing (NGS) to characterize DNA and RNA in pooled and individual samples of EV-enriched sweat collected from volunteers performing rigorous exercise. In all sequenced samples, we identified DNA originating from all human chromosomes, but only the mitochondrial chromosome was highly represented with 100% coverage. Most of the DNA mapped to unannotated regions of the human genome with some regions highly represented in all samples. Approximately 5 % of the reads were found to map to other genomes: including bacteria (83%), archaea (3%), and virus (13%), identified bacteria species were consistent with those commonly colonizing the human upper body and arm skin. Small RNA-seq from EV-enriched pooled sweat RNA resulted in 74% of the trimmed reads mapped to the human genome, with 29% corresponding to unannotated regions. Over 70% of the RNA reads mapping to an annotated region were tRNA, while misc. RNA (18,5%), protein coding RNA (5%) and miRNA (1,85%) were much less represented. RNA-seq from individually processed EV-enriched sweat collection generally resulted in fewer percentage of reads mapping to the human genome (7–45%), with 50–60% of those reads mapping to unannotated region of the genome and 30–55% being tRNAs, and lower percentage of reads being rRNA, LincRNA, misc. RNA, and protein coding RNA. Conclusions: Our data demonstrates that sweat, as all other body fluids, contains a wealth of nucleic acids, including DNA and RNA of human and microbial origin, opening a possibility to investigate sweat as a source for biomarkers for specific health parameters
    corecore