116 research outputs found

    Regulation of Carotenoid Composition and Shoot Branching in Arabidopsis by a Chromatin Modifying Histone Methyltransferase, SDG8

    Get PDF
    Carotenoid pigments are critical for plant survival, and carotenoid composition is tuned to the developmental stage, tissue, and to environmental stimuli. We report the cloning of the CAROTENOID CHLOROPLAST REGULATORY1 (CCR1) gene. The ccr1 mutant has increased shoot branching and altered carotenoid composition, namely, reduced lutein in leaves and accumulation of cis-carotenes in dark-grown seedlings. The CCR1 gene was previously isolated as EARLY FLOWERING IN SHORT DAYS and encodes a histone methyltransferase (SET DOMAIN GROUP 8) that methylates histone H3 on Lys 4 and/or 36 (H3K4 and H3K36). ccr1 plants show reduced trimethyl-H3K4 and increased dimethyl-H3K4 surrounding the CAROTENOID ISOMERASE (CRTISO) translation start site, which correlates with low levels of CRTISO mRNA. Microarrays of ccr1 revealed the downregulation of 85 genes, including CRTISO and genes associated with signaling and development, and upregulation of just 28 genes. The reduction in CRTISO transcript abundance explains the altered carotenoid profile. The changes in shoot branching are additive with more axillary branching mutants, but the altered carotenoid profile may partially affect shoot branching, potentially by perturbed biosynthesis of the carotenoid substrates of strigolactones. These results are consistent with SDG8 regulating shoot meristem activity and carotenoid biosynthesis by modifying the chromatin surrounding key genes, including CRTISO. Thus, the level of lutein, the most abundant carotenoid in higher plants that is critical for photosynthesis and photoprotection, appears to be regulated by a chromatin modifying enzyme in Arabidopsis thaliana

    The Impact of Thyroid Cancer and Post-Surgical Radioactive Iodine Treatment on the Lives of Thyroid Cancer Survivors: A Qualitative Study

    Get PDF
    BACKGROUND: Adjuvant treatment with radioactive iodine (RAI) is often considered in the treatment of well-differentiated thyroid carcinoma (WDTC). We explored the recollections of thyroid cancer survivors on the diagnosis of WDTC, adjuvant radioactive iodine (RAI) treatment, and decision-making related to RAI treatment. Participants provided recommendations for healthcare providers on counseling future patients on adjuvant RAI treatment. METHODS: We conducted three focus group sessions, including WDTC survivors recruited from two Canadian academic hospitals. Participants had a prior history of WDTC that was completely resected at primary surgery and had been offered adjuvant RAI treatment. Open-ended questions were used to generate discussion in the groups. Saturation of major themes was achieved among the groups. FINDINGS: There were 16 participants in the study, twelve of whom were women (75%). All but one participant had received RAI treatment (94%). Participants reported that a thyroid cancer diagnosis was life-changing, resulting in feelings of fear and uncertainty. Some participants felt dismissed as not having a serious disease. Some participants reported receiving conflicting messages from healthcare providers on the appropriateness of adjuvant RAI treatment or insufficient information. If RAI-related side effects occurred, their presence was not legitimized by some healthcare providers. CONCLUSIONS: The diagnosis and treatment of thyroid cancer significantly impacts the lives of survivors. Fear and uncertainty related to a cancer diagnosis, feelings of the diagnosis being dismissed as not serious, conflicting messages about adjuvant RAI treatment, and treatment-related side effects, have been raised as important concerns by thyroid cancer survivors

    Surgical perspectives from a prospective, nonrandomized, multicenter study of breast conserving surgery and adjuvant electronic brachytherapy for the treatment of breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accelerated partial breast irradiation (APBI) may be used to deliver radiation to the tumor bed post-lumpectomy in eligible patients with breast cancer. Patient and tumor characteristics as well as the lumpectomy technique can influence patient eligibility for APBI. This report describes a lumpectomy procedure and examines patient, tumor, and surgical characteristics from a prospective, multicenter study of electronic brachytherapy.</p> <p>Methods</p> <p>The study enrolled 65 patients of age 45-84 years with ductal carcinoma or ductal carcinoma in situ, and 44 patients, who met the inclusion and exclusion criteria, were treated with APBI using the Axxent<sup>® </sup>electronic brachytherapy system following lumpectomy. The prescription dose was 34 Gy in 10 fractions over 5 days.</p> <p>Results</p> <p>The lumpectomy technique as described herein varied by site and patient characteristics. The balloon applicator was implanted by the surgeon (91%) or a radiation oncologist (9%) during or up to 61 days post-lumpectomy (mean 22 days). A lateral approach was most commonly used (59%) for insertion of the applicator followed by an incision site approach in 27% of cases, a medial approach in 5%, and an inferior approach in 7%. A trocar was used during applicator insertion in 27% of cases. Local anesthetic, sedation, both or neither were administered in 45%, 2%, 41% and 11% of cases, respectively, during applicator placement. The prescription dose was delivered in 42 of 44 treated patients.</p> <p>Conclusions</p> <p>Early stage breast cancer can be treated with breast conserving surgery and APBI using electronic brachytherapy. Treatment was well tolerated, and these early outcomes were similar to the early outcomes with iridium-based balloon brachytherapy.</p

    Gender differences in self reported long term outcomes following moderate to severe traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The majority of research on health outcomes after a traumatic brain injury is focused on male participants. Information examining gender differences in health outcomes post traumatic brain injury is limited. The purpose of this study was to investigate gender differences in symptoms reported after a traumatic brain injury and to examine the degree to which these symptoms are problematic in daily functioning.</p> <p>Methods</p> <p>This is a secondary data analysis of a retrospective cohort study of 306 individuals who sustained a moderate to severe traumatic brain injury 8 to 24 years ago. Data were collected using the Problem Checklist (PCL) from the Head Injury Family Interview (HIFI). Using Bonferroni correction, group differences between women and men were explored using Chi-square and Wilcoxon analysis.</p> <p>Results</p> <p>Chi-square analysis by gender revealed that significantly more men reported difficulty setting realistic goals and restlessness whereas significantly more women reported headaches, dizziness and loss of confidence. Wilcoxon analysis by gender revealed that men reported sensitivity to noise and sleep disturbances as significantly more problematic than women, whereas for women, lack of initiative and needing supervision were significantly more problematic in daily functioning.</p> <p>Conclusion</p> <p>This study provides insight into gender differences on outcomes after traumatic brain injury. There are significant differences between problems reported by men compared to women. This insight may facilitate health service planners and clinicians when developing programs for individuals with brain injury.</p

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Get PDF
    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore