8 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Working on student’s alternative perceptions in teaching of physics : -A qualitative study on the developing of student’s alternativeperceptions to the scientific concepts

    No full text

    Rational design of a cytotoxic dinuclear Cu2 complex that binds by molecular recognition at two neighboring phosphates of the DNA backbone

    No full text
    Jany T, Moreth A, Gruschka C, et al. Rational design of a cytotoxic dinuclear Cu2 complex that binds by molecular recognition at two neighboring phosphates of the DNA backbone. Inorganic chemistry. 2015;54(6):2679-2690.The mechanism of the cytotoxic function of cisplatin and related anticancer drugs is based on their binding to the nucleobases of DNA. The development of new classes of anticancer drugs requires establishing other binding modes. Therefore, we performed a rational design for complexes that target two neighboring phosphates of the DNA backbone by molecular recognition resulting in a family of dinuclear complexes based on 2,7-disubstituted 1,8-naphthalenediol. This rigid backbone preorganizes the two metal ions for molecular recognition at the distance of two neighboring phosphates in DNA of 6-7 Å. Additionally, bulky chelating pendant arms in the 2,7-position impede nucleobase complexation by steric hindrance. We successfully synthesized the Cu(II)2 complex of the designed family of dinuclear complexes and studied its binding to dsDNA by independent ensemble and single-molecule methods like gel electrophoresis, precipitation, and titration experiments followed by UV-vis spectroscopy, atomic force microscopy (AFM), as well as optical tweezers (OT) and magnetic tweezers (MT) DNA stretching. The observed irreversible binding of our dinuclear Cu(II)2 complex to dsDNA leads to a blocking of DNA synthesis as studied by polymerase chain reactions and cytotoxicity for human cancer cells

    Rational Design of a Cytotoxic Dinuclear Cu<sub>2</sub> Complex That Binds by Molecular Recognition at Two Neighboring Phosphates of the DNA Backbone

    No full text
    The mechanism of the cytotoxic function of cisplatin and related anticancer drugs is based on their binding to the nucleobases of DNA. The development of new classes of anticancer drugs requires establishing other binding modes. Therefore, we performed a rational design for complexes that target two neighboring phosphates of the DNA backbone by molecular recognition resulting in a family of dinuclear complexes based on 2,7-disubstituted 1,8-naphthalenediol. This rigid backbone preorganizes the two metal ions for molecular recognition at the distance of two neighboring phosphates in DNA of 6–7 Å. Additionally, bulky chelating pendant arms in the 2,7-position impede nucleobase complexation by steric hindrance. We successfully synthesized the Cu<sup>II</sup><sub>2</sub> complex of the designed family of dinuclear complexes and studied its binding to dsDNA by independent ensemble and single-molecule methods like gel electrophoresis, precipitation, and titration experiments followed by UV–vis spectroscopy, atomic force microscopy (AFM), as well as optical tweezers (OT) and magnetic tweezers (MT) DNA stretching. The observed irreversible binding of our dinuclear Cu<sup>II</sup><sub>2</sub> complex to dsDNA leads to a blocking of DNA synthesis as studied by polymerase chain reactions and cytotoxicity for human cancer cells

    Rational Design of a Cytotoxic Dinuclear Cu<sub>2</sub> Complex That Binds by Molecular Recognition at Two Neighboring Phosphates of the DNA Backbone

    No full text
    The mechanism of the cytotoxic function of cisplatin and related anticancer drugs is based on their binding to the nucleobases of DNA. The development of new classes of anticancer drugs requires establishing other binding modes. Therefore, we performed a rational design for complexes that target two neighboring phosphates of the DNA backbone by molecular recognition resulting in a family of dinuclear complexes based on 2,7-disubstituted 1,8-naphthalenediol. This rigid backbone preorganizes the two metal ions for molecular recognition at the distance of two neighboring phosphates in DNA of 6–7 Å. Additionally, bulky chelating pendant arms in the 2,7-position impede nucleobase complexation by steric hindrance. We successfully synthesized the Cu<sup>II</sup><sub>2</sub> complex of the designed family of dinuclear complexes and studied its binding to dsDNA by independent ensemble and single-molecule methods like gel electrophoresis, precipitation, and titration experiments followed by UV–vis spectroscopy, atomic force microscopy (AFM), as well as optical tweezers (OT) and magnetic tweezers (MT) DNA stretching. The observed irreversible binding of our dinuclear Cu<sup>II</sup><sub>2</sub> complex to dsDNA leads to a blocking of DNA synthesis as studied by polymerase chain reactions and cytotoxicity for human cancer cells

    Rational Design of a Cytotoxic Dinuclear Cu<sub>2</sub> Complex That Binds by Molecular Recognition at Two Neighboring Phosphates of the DNA Backbone

    No full text
    The mechanism of the cytotoxic function of cisplatin and related anticancer drugs is based on their binding to the nucleobases of DNA. The development of new classes of anticancer drugs requires establishing other binding modes. Therefore, we performed a rational design for complexes that target two neighboring phosphates of the DNA backbone by molecular recognition resulting in a family of dinuclear complexes based on 2,7-disubstituted 1,8-naphthalenediol. This rigid backbone preorganizes the two metal ions for molecular recognition at the distance of two neighboring phosphates in DNA of 6–7 Å. Additionally, bulky chelating pendant arms in the 2,7-position impede nucleobase complexation by steric hindrance. We successfully synthesized the Cu<sup>II</sup><sub>2</sub> complex of the designed family of dinuclear complexes and studied its binding to dsDNA by independent ensemble and single-molecule methods like gel electrophoresis, precipitation, and titration experiments followed by UV–vis spectroscopy, atomic force microscopy (AFM), as well as optical tweezers (OT) and magnetic tweezers (MT) DNA stretching. The observed irreversible binding of our dinuclear Cu<sup>II</sup><sub>2</sub> complex to dsDNA leads to a blocking of DNA synthesis as studied by polymerase chain reactions and cytotoxicity for human cancer cells
    corecore